Контрольно-оценочные средства для проведения текущего контроля

по ПОД.11 Математика: алгебра, начала математического анализа, геометрия

(1 курс, 2 семестр 2022-2023 уч. г.)

Текущий контроль №1

Форма контроля: Контрольная работа (Сравнение с аналогом)

Описательная часть: Письменный

Задание №1

Выполните задания (один из возможных вариантов задания):

1) Переведите значения градусной меры углов в радианную:

30°, 80°, 135°, 146°.

Переведите в градусную меру:
$$\frac{3\pi}{8}$$
, $\frac{5\pi}{3}$

Определите знаки выражений

$$\sin 115^{0} \cdot \cos 267^{0}$$

 $\sin \left(-243^{0}\right) \cdot \cos 100^{0}$

Найдите на числовой окружности очки:
$$\frac{\pi}{4}$$
; $-\frac{5\pi}{4}$;

Оценка	Показатели оценки
3	Решены два задаания
4	Решены три задаания
5	Решены четыре задаания

Решите (один из возможных вариантов задания):

Найдите
$$\cos x$$
, tgx , $ctgx$, если $\sin x = -\frac{1}{2}$ (4 четверть)

Вычислите
$$\sin 2\alpha$$
, $\cos 2\alpha$, $\cos \alpha = -\frac{1}{3}$ и $\pi < \alpha < \frac{3\pi}{2}$

Оценка	Показатели оценки
3	Решено задание 1).
4	Решено задание 1), вычислено значение sin a из задания 2).
5	Решено задание 1), вычислено значение $\sin \alpha$ из задания 2). вычислены значения $\sin 2\alpha$, $\cos 2\alpha$, из задания 2)

Задание №3

Решите уравнения (один из возможных вариантов задания):

$$2\sin x - 1 = 0$$

$$2\sin^2 x + 3\cos x - 3 = 0$$

 $3) \sin x + \cos x = 0$

5) SM N - COS N - C	
Оценка	Показатели оценки
3	Решено одно уравнение
4	Решены два уравнения
5	Решены три уравнения

Текущий контроль №2

Форма контроля: Контрольная работа (Информационно-аналитический)

Описательная часть: Письменный

Задание №1

(Один из возможных вариантов задания):

Пусть
$$f(x) = 3x^2 - 6$$
. Найдите $f(2)$

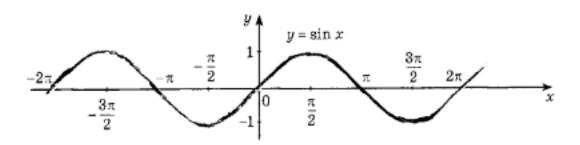
Найдите, какое значение функция
$$y = \frac{x^2 - x + 2}{x - 1}$$
 принимает при

$$x = -3$$
:

$$y = \frac{2}{x-1}$$
 . Найдите область определения функции:

4. Найдите область определения функции:

$$y = \sqrt{10x - 5}$$

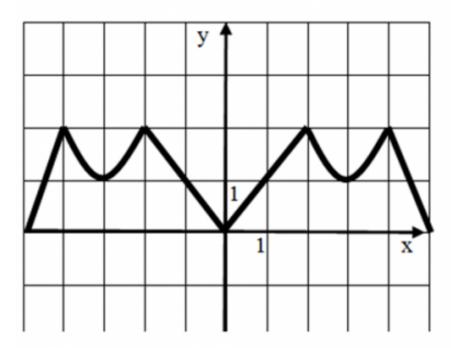

Оценка	Показатели оценки
3	Решены два задания
4	Решены три задания
5	Решены четыре задания

Задание №2

$$\sin x = \frac{1}{2}$$
_{на промежутке} $\left[-2\pi;\pi\right]$

Обозначьте все корни уранения

графике:



(один из возможных вариантов задания)

Оценка	Показатели оценки
3	Найден один корень уранения
4	Найдены два корня уранения
5	Найдены три корня уранения

Задание №3

Опишите функцию, график которой изображен на рисунке

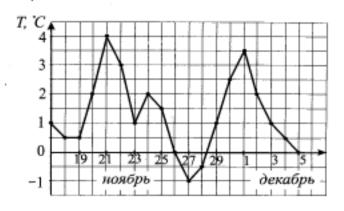
- 1) укажите область определения;
- 2) укажите множество значений;
- 3) является ли функция четной или нечетной?
- 4) укажите промежутки возрастания и убывания.

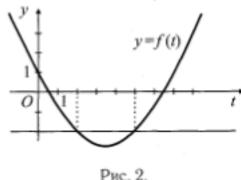
(один из возможных вариантов задания)

Оценка	Показатели оценки
3	Указаны два свойства
4	Указаны три свойства
5	Указаны четыре свойства

Задание №4

 На рисунке 1 точками показана среднесуточная температура воздуха каждый день. с 17 ноября по 5 декабря. По горизонтали указываются числа месяца, по вертика- ли — температура в градусах Цельсия. Для наглядности точки соединены линией. Используя график, определите наибольшую среднесуточную температуру в период с 22 ноября по 3 декабря.




Рис. 1.

Порядок выполнения задания

- 1. Прочитайте текст задачи.
- Определите, изменение какой величины характеризует график.
- Найдите цену деления по вертикали.
- Выделите период времени, о котором говорится в задаче.
- Определите наибольшую среднесуточную температуру.
- 6. Запишите ответ.

Максимальное число баллов - 2

2. Определите по графику (см. рис. 2) длину промежутка, на котором значения функшин y = f(x) будут не больще -2.

Максимальное число баллов - 3

Оценка	Показатели оценки
3	Суммарное число набранных баллов -3
4	Суммарное число набранных баллов 4
5	Суммарное число набранных баллов -5

Сила переменного электрического тока является функцией, зависящей от времени, и выражается формулой

$$I = A \sin (\omega t + \varphi),$$

где A — амплитуда колебания, ω — частота, ϕ — начальная

фаза.

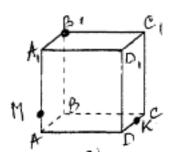
$$A=2$$
, $\omega=1$, $\varphi=\frac{\pi}{4}$

Запишите формулу для построения графика с использованием численных значений величин ${\rm B} \ {\rm Buge} \ y = {\rm f}(x).$

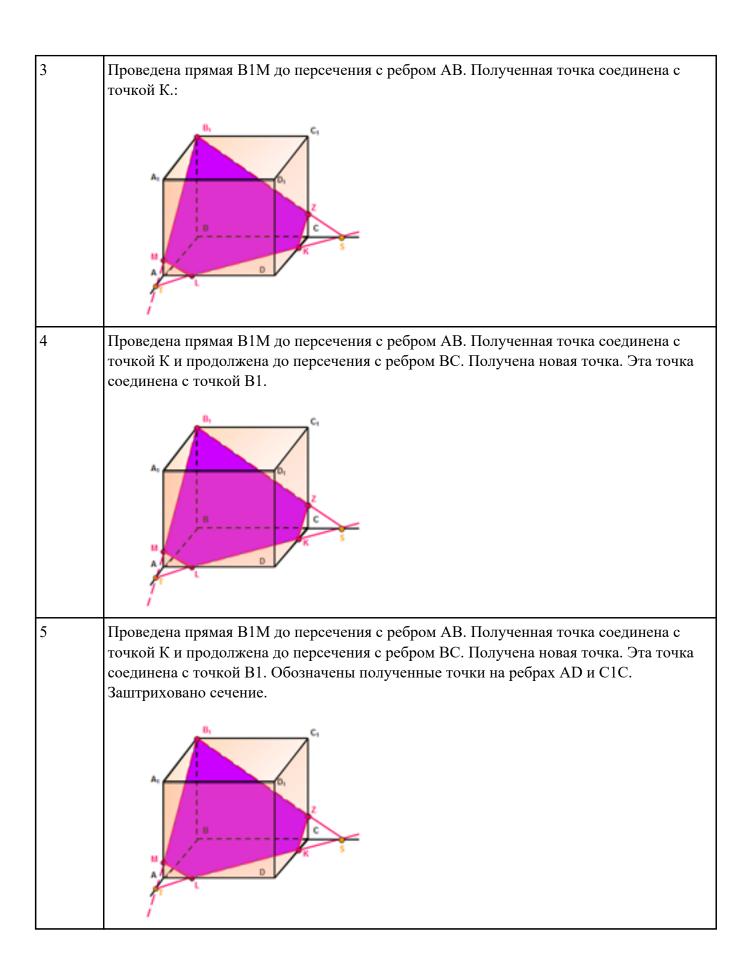
Укажите виды простейших преобразований вспомогательного графика $y = \sin x$, необходимые для построения графика полученной функции.

Оценка	Показатели оценки
3	Записана формула для построения графика с использованием численных значений $2\sin\!\left(x-\frac{\pi}{4}\right)_{\!$

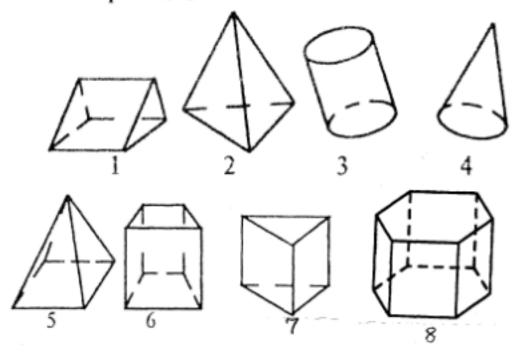
4	Записана формула для построения графика с использованием численных значений
	$2\sin\left(x-\frac{\pi}{4}\right).$
	Указан один вид простейших преобразований вспомогательного графика $y = \sin x$
	для построения графика полученной функции. (сдвиг вспомогательного графика вправо
	<u>π</u>
	вдоль оси oX на $f{4}$ или растяжение вспомогательного графика в 2 раза вдоль оси oY)
5	Записана формула для построения графика с использованием численных значений
	$2\sin\left(x-\frac{\pi}{4}\right).$
	$v = \sin v$
	Указаны 2 вида простейших преобразований вспомогательного графика $y = \sin x$ для
	построения графика полученной функции.(сдвиг вспомогательного графика вправо
	вдоль оси oX на $\frac{1}{4}$ и растяжение вспомогательного графика в 2 раза вдоль оси oY)


Текущий контроль №3

Форма контроля: Практическая работа (Информационно-аналитический)


Описательная часть: Письменный

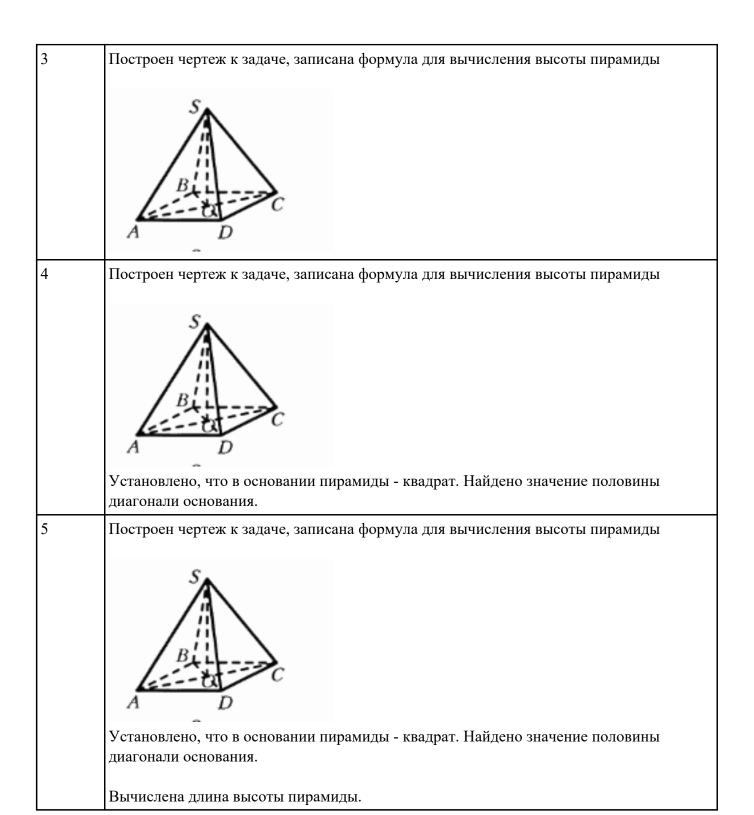
Задание №1


Построить сечение куба плоскостью МВ1К

Оценка	Показатели оценки

1. Среди изображенных тел выберите, те которые являются призмами

Оценка	Показатели оценки
3	Указаны два номера из четырех (1,6,7,8)
4	Указаны три номера из четырех (1,6,7,8)
5	Указаны четыре номера из четырех (1,6,7,8)


Задание №3

Решить задачу, построить чертеж.

(один из возможных вариантов задания)

В правильной четырёхугольной пирамиде SABCD точка O — центр основания, S — вершина, SC = 13, AC = 10. Найдите высоту пирамиды.

Оценка	Показатели оценки

Решить задачу (один из возможных вариантов задания):

Три латунных куба с ребрами 3 см, 4 см и 5 см переплавлены в один куб. Какую длину имеет ребро этого куба?

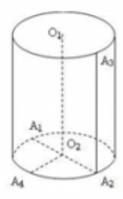
Оценка	Показатели оценки
3	Вычислена сумма объемов трех кубов.
4	Вычислена сумма объемов трех кубов. Записана формула объема куба
5	Вычислена сумма объемов трех кубов. Записана формула объема куба. Вычислено ребро полученного куба, как корень кубический из суммы объемов трех кубов

Ответьте на вопросы:

-	
1.	Многоугольники из которых составлены
	многогранники – это
2.	Перпендикуляр, проведенный из какой-нибудь
	точки одного основания к плоскости другого –
	это многогранника
Треугольная призма	
3.	В треугольной призме можно провести
	диагональ.
4.	В основании треугольной призмы может лежать
	равнобедренный треугольник? (да, нет)
5.	В правильной треугольной призме в основании
	лежит
6.	Троугоди нод прирме имеет побер
	Треугольная призма имеетребер
7.	Боковые грани прямой треугольной призмы
8.	Если в основании прямой призмы лежит
	правильный многоугольник то призма
	называется
Четырехугольная призма	
10.	В основании четырехугольной призмы может
	лежать ромб? (да, нет)
11.	Сколько вершин имеет куб?

Оценка	Показатели оценки
3	Даны ответы на 5-7 вопросов
4	Даны ответы на 8-9 вопросов
5	Даны ответы на 10-11 вопросов

Текущий контроль №4


Форма контроля: Контрольная работа (Информационно-аналитический)

Описательная часть: Письменный

Задание №1

Пройти тест (правильный ответ 1 балл):

- Какая фигура находится в основаниях цилиндра:
- а) сфера;
- б) круг;
- в) эллипс.
- 2. Назовите отрезок, который является радиусом цилиндра:

- a) O₂A₁;
- б) O₂O₁;
- B) A₃A₂.
- 3. Укажите на рисунке образующую цилиндра:
- a) O1O2;
- б) A₂A₃;
- B) A₁A₂.
- 4. Высота цилиндра это:
- а) расстояние между плоскостями его оснований;
- б) отрезок, который соединяет две любые точки оснований;
- в) отрезок, который соединяет центр круга с любой точкой цилиндра.

5. Какая фигура является осью цилиндра?
а) прямая O ₁ O ₂ ; б) отрезок O ₁ O ₂ ; в) отрезок A ₁ A ₂ .
6. Равносторонний цилиндр – это цилиндр, у которого:
а) образующая равна высоте;б) радиус основания равен высоте цилиндра;в) диаметр основания равен высоте цилиндра.
7. Какая фигура является основанием конуса:
а) окружность; б) круг; в) эллипс.
8. Назовите отрезок, который является радиусом конуса:
a) CB 6) CO B) SA
9. Укажите на рисунке образующую конуса:
a) SO; б) SC; в) CB.

	Оценка	Показатели оценки
L		

3	4-5 правильных ответов
	Ключ к тесту: 1)б; 2)а; 3)а, б; 4)а; 5)а; 6)в; 7)б; 8)б; 9)а
4	6-7 правильных ответов
	Ключ к тесту: 1)б; 2)а; 3)а, б; 4)а; 5)а; 6)в; 7)б; 8)б; 9)а
5	8-9 правильных ответов
	Ключ к тесту: 1)б; 2)а; 3)а, б; 4)а; 5)а; 6)в; 7)б; 8)б; 9)а

Решить задачи (один из возможных вариантов задания):

Площадь осевого сечения цилиндра равна $144\,cm^2$. Найдите площадь боковой поверхности цилиндра.

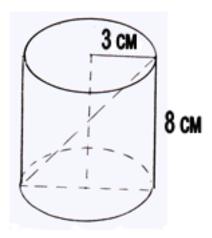
- 1. Площадь осевого сечения равностороннего конуса равна 81 c_M ². Вычислите площадь его полной поверхности.
- Длина радиуса шара равна 5 см. Найдите площадь его поверхности.

Оценка	Показатели оценки
3	Решена одна задача
4	Решены две задачи
5	Решены три задачи

Задание №3

Решите задачу (один из возможных вариантов задания):

Сколько потребуется краски, чтобы с двух сторон покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м (без крышки), если на один квадратный метр


расходуется 0,2 кг краски?

packodyctes 0,2 ki kpacku:	
Оценка	Показатели оценки
3	Записаны формулы для вычисления площади круга - основания цилиндра и боковой поверхности цилиндра. Вычислена площадь основания и боковой поверхности.
4	Записаны формулы для вычисления площади круга - основания цилиндра и боковой поверхности цилиндра. Вычислена площадь основания и боковой поверхности. Вычислено количество краски, необходимое для окрашивания бака без учета окурашивания с двух сторон.

5	Записаны формулы для вычисления площади круга - основания цилиндра и боковой
	поверхности цилиндра. Вычислена площадь основания и боковой поверхности.
	Вычислено количество краски, необходимое для окрашивания бака с двух сторон.

Решите задачу (один из возможных вариантов задания):

Дан цилиндр:

Найдите:

Sдиаг.сеч - ? dсеч - ? (dсеч - диагональ сечения), Socн - ? Sбок - ? Vцил. - ?

Оценка	Показатели оценки	
3	Найдены три величины из заданных	
4	Найдены четыре величины из заданных	
5	Найдены пять величин	

Текущий контроль №5

Форма контроля: Практическая работа (Информационно-аналитический)

Описательная часть: Письменный

Задание №1

1. Пользуясь определением производной, найдите производные функций:

(один из возможных вариантов задания)

<u> </u>	1	
Оценка	Показатели оценки	
3	Найдены три производные	
4	Найдены четыре производные	
5	Найдены все 5 производных	

Задание №2

Исследуйте функцию на экстремумы (один из возможных вариантов задания):

$$y = x3 - 3x2$$

Оценка	Показатели оценки
3	Найдена производная, вычислены критические точки, область определения функции разбита на интервалы монотонности
4	Найдена производная, вычислены критические точки, область определения функции разбита на интервалы монотонности.
	Определены зхнаки производной в каждом интервале, обозначено возрастание, убывание функции на интервалах
5	Найдена производная, вычислены критические точки, область определения функции разбита на интервалы монотонности.
	Определены зхнаки производной в каждом интервале, обозначено возрастание, убывание функции на интервалах.
	Определен вид экстремума, вычислены максимумы, минимумы функции

Задание №3

Найдите наибольшее и наименьшее значение функции на заданном отрезке (один из возможных вариантов задания):

$$f(x) = \frac{1}{4}x^4 - 2x^2 + 1$$
, $x \in [-1;3]$

Оценка	Показатели оценки
3	Найдена производная, вычислены критические точки, область определения функции разбита на интервалы монотонности. Определены зхнаки производной в каждом интервале, обозначено возрастание, убывание функции на интервалах

4	Найдена производная, вычислены критические точки, область определения функции разбита на интервалы монотонности. Определены зхнаки производной в каждом интервале, обозначено возрастание, убывание функции на интервалах. Определен вид экстремума, вычислены максимумы, минимумы функции
5	Найдена производная, вычислены критические точки, область определения функции разбита на интервалы монотонности. Определены зхнаки производной в каждом интервале, обозначено возрастание, убывание функции на интервалах. Определен вид экстремума, вычислены максимумы, минимумы функции.
	Вычислены значения функции на концах промежутка, указаны наибольшее и наименьшее значения функции

Решить задачи (один из возможных вариантов задания):

При движении тела по прямой, расстояние изменятся по закону $S(t) = \frac{t^3}{3} - 4t^2 + 7t + 2$. Найдите скорость тела через 3 секунды после начала движения.

Составить уравнение касательной к графику функции $f(x) = 4x^2 - 8x - 2$, $x_0 = 3$

3.Сила тока **I** изменяется в зависимости от ввремени **t** по закону I = 0,4 t2 (**I** - в амперах, t - в секундах). Найти скорость движения в конце 8-й секунды.

Оценка	Показатели оценки
3	Решена одна задача
4	Решены две задачи
5	Решены три задачи

Задание №5

Исследуйте на монотонность и выпуклость функцию

$$y = -x^2 + 8x - 7$$

используя вторую производную

(один из возможных вариантов задания)

Оценка	Показатели оценки
3	Найдены первая и вторая производные
4	Найдены первая и вторая производные. Вычислены критические точки по второй производной.
5	Найдены первая и вторая производные. Вычислены критические точки по второй производной. Определены промежутки выпуклости

Задание №6

1

Решить задачи (один из возможных вариантов задания):

При движении тела по прямой, расстояние изменятся по закону $S(t) = \frac{t^3}{3} - 4t^2 + 7t + 2$. Найдите скорость тела через 3 секунды после начала движения.

Составить уравнение касательной к графику функции $f(x) = 4x^2 - 8x - 2$, $x_0 = 3$ 2.

3.Сила тока **I** изменяется в зависимости от ввремени **t** по закону I = 0,4 t2 (I - в амперах, t - в секундах). Найти скорость движения в конце 8-й секунды.

Оценка	Показатели оценки
,	_
3	Решена одна задача
4	Решены две задачи
5	Решены три задачи

Залание №7

Исследуйте на монотонность и выпуклость функцию

$$y = -x^2 + 8x - 7$$

используя вторую производную

(ogmino positionalism supriumi ob sugarium)		
Оценка	Показатели оценки	

3	Найдены первая и вторая производные
4	Найдены первая и вторая производные. Вычислены критические точки по второй производной.
5	Найдены первая и вторая производные. Вычислены критические точки по второй производной. Определены промежутки выпуклости

Текущий контроль №6

Форма контроля: Контрольная работа (Информационно-аналитический)

Описательная часть: Письменный

Задание №1

Скорость движения точки изменяется по закону S = (3t2 + 2t + 1)м/с. Найдите путь, пройденный точкой за 10 с от начала движения.

Запишите формулу вычисления пути, пройденного точкой, с помощью определенного интеграла

(один из і	обрания вариантов задания)
Оценка	Показатели оценки
3	Записана формула вычисления пути, пройденного точкой, с помощью определенного
	t_2
	$s = \int_{t_1} f(t) dt.$
	интеграла
4	Записана формула вычисления пути, пройденного точкой, с помощью определенного
	t_2
	$s = \int_{t_{1}}^{\infty} f(t) dt$.
	интеграла
	10
	$s = \int_{0}^{\infty} \left(3t^2 + 2t + 1\right) dt$
	Записан интеграл:

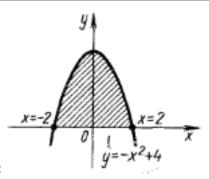
3аписана формула вычисления пути, пройденного точкой, с помощью определенного $s = \int\limits_{t_1}^{t_2} f(t) \, dt.$ интеграла $s = \int\limits_{0}^{10} \left(3t^2 + 2t + 1\right) \, dt$ Записан интеграл: . Произведены вычисления, получено значение S = 1110 м.

Задание №2

Вычислите работу силы (один из возможных вариантов задания):

Сжатие x винтовой пружины пропорционально приложенной силе F. Вычислить работу силы F при сжатии пружины на 0,04 м, если для сжатия ее на 0,01 м нужна сила 10 H.

Оценка	Показатели оценки
3	$A = \int_{a}^{b} f(x) dx.$
	Записана формула вычисления работы силы:
	F = k x, Записан закон Гука:
4	$A = \int_{a}^{b} f(x) dx.$
	Записана формула вычисления работы силы:
	$F = kx$, Записано выражение $A = \int_{0}^{0.04} 1000x dx$

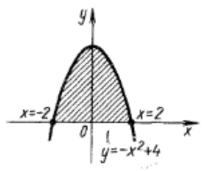

Задание №3

Вычислите площадь фигуры, ограниченной линиями: y = -x2 + 4, используя определенный интеграл.

Построить чертеж.

Оценка	Показатели оценки
3	Построен чертеж: Записана формула для вычисления площади фигуры. Найдены пределы интегрирования.

4


Построен чертеж:

Записана формула для вычисления площади фигуры. Найдены пределы интегрирования.

Записано выражение S для вычисления площади: $S = 2S_1$, где

$$S_1 = \int_0^2 (-x^2 + 4) \, dx$$

5

Построен чертеж:

Записана формула для вычисления площади фигуры. Найдены пределы интегрирования.

 $S\!=\!2S_1$, где

$$S_1 = \int_0^2 (-x^2 + 4) \, dx$$

 $10\frac{2}{3}$ Получен результат: S = 3 кв.ед