Контрольно-оценочные средства для проведения текущего контроля

по МДК.01.03 Особые методы обработки авиационных материалов

(3 курс, 6 семестр 2022-2023 уч. г.)

текущии контроль м21
Форма контроля: Устный опрос (Опрос)
Описательная часть:
Задание №1
Фронтальный опрос
Вопросы (оцениваются в один балл за каждый верный ответ.):
1. Какие требования предъявляются к инструментальным материалам?

2	Vorcen	VIIMIIIIOORIII	ооотор	Montellaonto	duning Mayariniagria	арайатра
۷.	каков	химическии	состав,	маркировка,	физико-механические	своиства

(твердость, прочность, красностойкость) и область применения:

- углеродистых сталей (УС);
- легированных сталей (ЛС);
- быстрорежущих сталей (БС);
- твердых сплавов (ТСП);
- минеральной керамики (МК);
- кубического нитрида бора (КНБ);
- алмазов природных (АП) и синтетических (АС).
- 3. Какой химический состав, маркировка и физико-механические свойства безвольфрамовых твердых сплавов?
- 4. Что означают термины «белая керамика» и «черная керамика»? Приведите примеры тех и других материалов. Какие материалы называют «керметами»?
- 5. Что такое «композиты»? Приведите примеры.
- 6. Назовите группы инструментальных материалов, которые рекомендуется выбирать при работе в диапазоне скоростей указанных ниже:

- 1) V≤30 м/мин;
- 2) V≤60 м/мин;
- 3) V≤20 м/мин;
- 4) V≤150 м/мин;
- 5) V = 300 600; м/мин
- 6) V = 300 500. м/мин
- 7. Назовите группы инструментальных материалов, величина красностойкости которых указана ниже:
- 1. $T = 650^{\circ}C$;
- 2. T = 1000°C;
- 3. T = 1100°C;
- 4. $T = 1200^{\circ}C$;
- 5. T = 1800°C;
- 6. T = 1300°C;
- 7. $T = 200^{\circ}C$;
- 8. $T = 250^{\circ}C$;
- 9. T = 1500°C;
- 10. $T = 700^{\circ}C$

10. 1 /0	10.1 700 6		
Оценка Показатели оценки			
3	3 верных ответа		
4	4 верных ответа		
5	5 верных ответов		

Форма контроля: Письменный опрос (Опрос)

Описательная часть: Тестирование

Задание №1

Тестовое задание по теме «Смазочно-охлаждающие технологические средства»

Каждый вопрос имеет один или несколько правильных ответов. Выберите верные.

Цель применения СОТС:

- 1. уменьшение износа инструмента;
- 2. снижение шероховатости поверхности;
- 3. повышение производительности труда.

Эффект действия СОТС это:

- 1. повышение сил трения;
- 2. снижение температуры резания;
- 3. удаление стружки.

К классу СОТС по агрегатному состоянию относятся:

- 1. масляные жидкости;
- 2. технологические смазки;
- 3. водосмешиваемые жидкости

Преимущества водосмешиваемых жидкостей:

- 1. высокая стоимость растворов;
- 2. пожаробезопасность;
- 3. высокая охлаждающая способность.

Масляные жидкости имеют:

- 1. хорошие антикоррозионные свойства;
- 2. высокую смазывающую способность;
- 3. пожаробезопасность.

Оценка	Показатели оценки
3	3 верных ответа
4 4 верных ответа	
5	5 верных ответов

Форма контроля: Практическая работа (Опрос)

Описательная часть:

Задание №1

Выберите инструментальный материал для обработки:

- 1. сверление сквозного отверстия О10 в детали из материала 12Х21Н5Т
- 2. чистовое обтачивание детали из сплава ОТ4-1
- 3. фрезерование плоской поверхности детали 43ХН2МВФА в условиях ударных нагрузок

Инструкция по выполнению:

- 1. Определите, к какой группе материалов относится материал детали по обрабатываемости (табл. 1.1, стр. 13)
- 2. Расшифруйте марку обрабатываемого материала (1 балл)
- 3. Напишите краткую характеристику обрабатываемого материала (1 балл)
- 4. Для заданных условий резания (вида обработки), определите инструментальный материал (табл. 1.5 стр.24, табл. 1.8 стр.28) (2 балла)
- 5. Расшифруйте марку инструментального материала (1 балла)
- 6. Начертите и заполните таблицу

Обрабатывае	Группа	Расшифровка	Характерист	Условия	Инструмента	Расшифровка
мый	материала по	марки	ика	резания (вид	льный	инструмента
материал	обрабатывае	материала	материала	обработки)	материал	льного
	мости					материал

Оценка	Показатели оценки
3	10-11 баллов
4	12-13 баллов
5	14-15 баллов

Текущий контроль №4

Форма контроля: Письменный опрос (Опрос)

Описательная часть: Тестирование

Задание №1

Тестовое задание

Внимательно прочитайте задание. Выберите один верный ответ для каждого вопроса

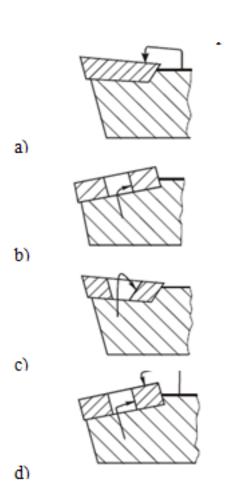
№	Вопрос	Варианты ответа
1	Скорость при обработке алюминиевых сплавов	а) больше скорости для обработки стали
		б) меньше скорости для обработки стали
		в) равна скорости обработки стали
2	Какую стружку дает обработка чистого алюминия?	а) сливную
		б) ступенчатую
		в) элементную
3	По каким поверхностям изнашивается инструмент при	а) по задней
	обработке алюминиевых сплавов?	б) по передней
		в) по передней и задней одновременно
4	Твердый сплав какой группы применяют для обработки	a) BK (BK3, BK3-OM)
	алюминиевых сплавов?	б) ТК (Т5К10)
		в) применяют только быстрорежущую сталь
5	Фрезы для обработки алюминиевых сплавов	а) большим количеством зубьев
	отличаются от фрез для	б) большим расстоянием между
	обработки стали	зубьями и большей выемкой для
		выхода стружки.
		в) меньшим расстоянием между
_		зубьями
6	Диаметр сверла при обработке алюминиевых сплавов	а) равен диаметру отверстия
	anominireddia ciliadob	б) на 0,20,5 мм меньше
		диаметра отверстия

1	Ĭ	в) на 0,20,5 мм больше
		диаметра отверстия
7	Как выбирают наружный диаметр поверхности под	а) равен диаметру резьбы
	нарезание резьбы на детали из	б) меньше номинального
	алюминиевого сплава	диаметра резьбы
		на 0,20,3 p, где p – шаг резьбы.
		в) больше номинального
		диаметра резьбы
		на 0,20,3 р, где р – шаг резьбы.
8	Какая стружка образуется при обработке вольфрама?	а) надлома
		б) ступенчатую
		в) элементную
9	Какая стружка образуется при обработке титановых сплавов?	а) надлома
		б) ступенчатую
		в) элементную
10	Какой теплопроводностью	а) ниже
	обладают титановые сплавы по сравнению со сталью 45%	б) выше
	сравнению со сталью 4570	о) выше
		в) одинаковой
11	При обработке деталей из тита- новых сплавов вследствие	а) образование нароста
	малой усадкой стружки происходит	б) образование наклепа
	происходит	в) образование микротрещин.
12	Титановые сплавы обладают	а) высокой теплопроводностью
		б) высокой химической
		активностью
		в) высокой хрупкостью
13	Какой твердый сплав	a) BK8Ta
	целесообразно использовать для	
	обработки титановых сплавов?	б) T5К10
		в) ТТ7К12
		-

14	Чему равен угол наклона главной режущей кромки резца при черновой обработке титановых сплавов?	а) 0+5б) 0в) 05
15	Чему равен угол наклона главной режущей кромки резца при чистовой обработке титановых сплавов?	a) 0+5 б) 0 в) 05
16	Стружка какого материала является пожароопасной?	а) титанаб) вольфрамав) меди
17	На каком материале образуется твердая корка в результате его высокой химической активности?	а) титана б) алюминия
18	При обработке какого материала с ростом скорости резания сливная стружка переходит в элементную.	в) медиа) сталиб) титанав) алюминия
19	При обработке какого материала с ростом скорости резания элементная стружка переходит в сливную.	а) сталиб) титанав) чугуна
20	Какие СОТС используют для обработки титановых сплавов	а) эмульсии стандартного состава б) твердый СОТС в) не используют

Оценка	Показатели оценки
3	15-16 верных ответов
4	17-18 верных ответов
5	19-20 верных ответов

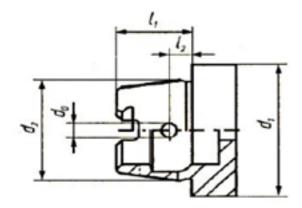
Форма контроля: Письменный опрос (Опрос)


Описательная часть: Тестирование

Задание №1

Тестовое задание

1 Сопоставьте способы крепления пластин и их названия


- 1 Рычагом через отверстие
- 2 Прихватом сверху
- 3 Штифтом через отверстие и прихватом сверху
- 4 Винтом с конической головкой


2 От чего зависит размер пластины

- 1. От обрабатываемого материала
- 2. От размера посадочного гнезда державки
- 3. От режима резания

- 3 Какой способ крепления пластины применяется для державок небольших размеров для наружного точения при выполнении ненагруженных операцией?
 - 1. Винтом с конической головкой
 - 2. Прихватом сверху
 - 3. Штифтом через отверстие и прихватом сверху
- 4 С каким режимом резания связан выбор радиуса при вершине инструмента?
 - 1. Скорость резания
 - 2. Подача
 - 3. Глубина резания
- 5 Оправка с каким хвостовиком изображена на рисунке

- 1. *HSK*
- 2. Конус Морзе
- 3. Конус Морзе с лапкой
- 6 Как расшифровывается аббревиатура HSM?
 - 1. High Speed Machining
 - 2. High Speed Cutting
 - 3. High Power Machining
- 7 Как называются кривые изображенные на рисунке?

- 1. Кривые Соломона
- 2. Кривые Галилея
- 3. Кривые Платона

8 Какие пластины используют для обеспечения наилучших показателей качества обработанной поверхности

- 1. High Speed Machining
- 2. с технологией Wiper
- 3. Sandvik

9 Какой режим резания влияет в наибольшей степени на стойкость инструмента?

- 1. Скорость резания
- 2. Подача
- 3. Глубина резания

10 От чего зависит выбор материала пластины?

- 1. Режима резания
- 2. Обрабатываемого материала
- 3. Геометрии детали

Оценка	Показатели оценки
3	6-7 верных ответов
4	8-9 верных ответов

Форма контроля: Письменный опрос (Опрос)

Описательная часть:

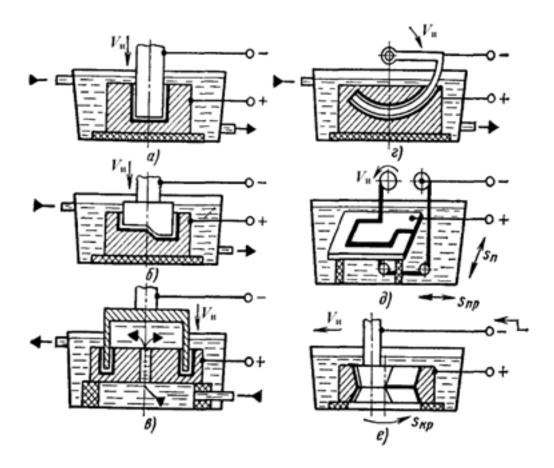
Задание №1

Проверочная работа

по теме «Электоро-физические методы обработки»

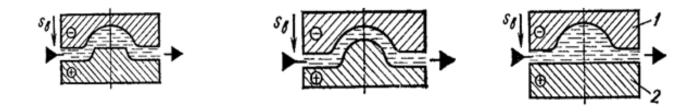
Задание 1. Выберите правильный вариант ответа. За каждый верный ответ 1 балл. Максимальная оценка 5 баллов

- 1. Дайте определение, что такое комбинированный электроэрозионно-химический метод обработки: а) сочетание лезвийной механической обработки с ультразвуковым вибрационным воздействием лезвийного инструмента на обрабатываемую заготовку; б) локальный нагрев срезаемого слоя заготовки струей полностью ионизированного газа и последующий съем этого слоя режущим инструментом; в) электрохимическое растворение металла заготовки с последующим его удалением механическим путем; г) химическое растворение металла заготовки с последующим его удалением механическим путем; д) одновременное электроэрозионное разрушение металла искровыми разрядами, нагревом контактных перемычек, и его анодное растворение в проточном электролите.
- 2. Дайте определение, что такое комбинированный анодномеханический метод обработки: а) сочетание лезвийной механической обработки с ультразвуковым вибрационным воздействием лезвийного инструмента на обрабатываемую заготовку; б) локальный нагрев срезаемого слоя заготовки струей полностью ионизированного газа и последующий съем этого слоя режущим инструментом; в) электрохимическое растворение металла заготовки с последующим его удалением механическим путем; г) химическое растворение металла заготовки с последующим его удалением механическим путем; д) одновременное электроэрозионное разрушение металла искровыми разрядами, нагревом контактных перемычек, и его анодное растворение в проточном электролите.
- 3. Дайте определение, что такое комбинированный ультразвуковой механический метод обработки: а) сочетание лезвийной механической обработки с ультразвуковым вибрационным воздействием лезвийного инструмента на обрабатываемую заготовку; б) локальный нагрев срезаемого слоя заготовки струей полностью ионизированного газа и последующий съем этого слоя режущим инструментом; в) электрохимическое растворение металла заготовки с последующим его удалением механическим путем; г) химическое растворение металла заготовки с последующим его удалением механическим путем; д) одновременное электроэрозионное разрушение металла искровыми разрядами, нагревом контактных перемычек, и его анодное


растворение в проточном электролите.

- 4. Дайте определение, что такое комбинированный плазменномеханический метод обработки: а) сочетание лезвийной механической обработки с ультразвуковым вибрационным воздействием лезвийного инструмента на обрабатываемую заготовку; б) локальный нагрев срезаемого слоя заготовки струей полностью ионизированного газа и последующий съем этого слоя режущим инструментом; в) электрохимическое растворение металла заготовки с последующим его удалением механическим путем; г) химическое растворение металла заготовки с последующим его удалением механическим путем; д) одновременное электроэрозионное разрушение металла искровыми разрядами, нагревом контактных перемычек, и его анодное растворение в проточном электролите.
- 5. Дайте определение, что такое комбинированный химикомеханический метод обработки: а) сочетание лезвийной механической обработки с ультразвуковым вибрационным воздействием лезвийного инструмента на обрабатываемую заготовку; б) локальный нагрев срезаемогослоя заготовки струей полностью ионизированного газа и последующий съем этого слоя режущим инструментом; в) электрохимическое растворение металла заготовки с последующим его удалением механическим путем; г) химическое растворение металла заготовки с последующим его удалением механическим путем; д) одновременное электроэрозионное разрушение металла искровыми разрядами, нагревом контактных перемычек, и его анодное растворение в проточном электролите.

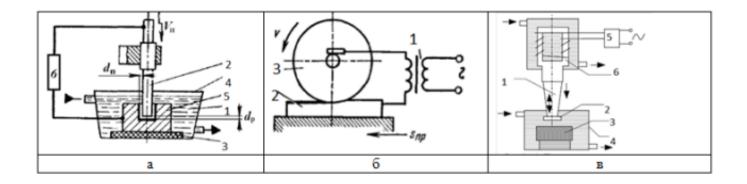
Задание 2. На рисунке показаны схемы наиболее распространенных способов ЭЭО. Сопоставьте способы получения ЭЭО и их схемы:


- 1. получение сквозных отверстий любого поперечного сечения
- 2. получение фасонных отверстий и полостей по способу трепанации получение глухих отверстий и полостей
- 3. получение отверстий с криволинейной осью
- 4. вырезка заготовок из листа проволочными или ленточными инструментами-электродами
- 5. разрезание заготовок; клеймение деталей.
- 6. плоское, круглое и внутреннее шлифованием

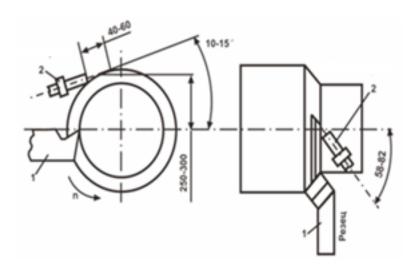
За каждый верный ответ 1 балл. Максимальная оценка 5 баллов

Задание 3. На рисунке выполнены схемы формообразования поверхности заготовки методом ЭХО. Расположите их в верной последовательности. Напишите названия условных обозначений.

Оценка за задание 3 балла



Задание 4. Расшифруйте аббревиатуры: ЭФЭХ, БУФО, ЭЭО, ЭХО, АМО, ЭЛО, СЛО


За каждый верный ответ 1 балл. Максимальная оценка 7 баллов

Задание 5. Схемы каких обработок представлены на рисунках, напишите для каждого рисунка, элементы, обозначенные цифрами

За каждый верный ответ 2 балл. Максимальная оценка 6 баллов

Задание 6. Схема какой обработки изображена на рисунке, напишите ее назначение, достоинства и недостатки. Максимальная оценка 4 балла

Оценка	Показатели оценки
3	20 - 23 баллов
4	24-27 баллов
5	28-30 баллов

Форма контроля: Практическая работа (Опрос)

Описательная часть:

Задание №1

Практическое задание

Дайте сравнительный характеристику методам ППД. Результаты оформите таблицей.

Критерии оценки: каждый метод ППД оценивается в 1 балл. Максимальное количество баллов 10

N	Летод ППД	Вид (статическ	Инструмент	Технологическ	Исходная	Достигаемая
		ий/ударный)		ие параметры	точность и	точность и
L					шероховатость	шероховатость
Γ						

ТЕСТИРОВАНИЕ

Выберите правильный вариант ответа на посталенные вопросы. Каждый верный ответ опенивается в 1 балл. максимальное количество баллов - 5

- 1. Какими параметрами характеризуется качество поверхностного слоя деталей машин?
- а) микрогеометрия, глубина и степень наклепа, знак напряжений в поверхностном слое;
- б) макрогеометрия и точность размеров детали;
- в) точность формы детали в продольном и поперечном направлении.
 - 1. На каком этапе технологического процесса механической обработки детали применяется алмазное выглаживание, обкатывание шариком, роликом и их назначение?
- а) на отделочном этапе, обеспечивается выполнение требований по качеству поверхностного слоя;
- б) на чистовом этапе, обеспечивается выполнение требований по точности размеров цилиндрических поверхностей в поперечном и продольном направлении;
- в) на чистовом этапе, обеспечивается выполнение требований по точности формы цилиндрических поверхностей в поперечном и продольном направлении.
 - 1. Какие требования предъявляются к исходному состоянию обрабатываемой поверхности перед алмазным выглаживанием, обкатыванием шаровым инструментом?
- а) выполнение требований рабочего чертежа по точности размера и формы поверхности, обеспечение возможной минимальной высоты микронеровностей;
- б) выполнение требований рабочего чертежа по глубине и степени наклепа поверхностного слоя;

- в) выполнение требований рабочего чертежа по напряженному состоянию поверхностного слоя.
- 4. Какая технологическая задача решается при обкатывании и выглаживании поверхностей в процессах ППД?
- а) уменьшение шероховатости поверхности, упрочнение поверхностного слоя, создание в поверхностном слое остаточных напряжений противоположного знака рабочих напряжений, возникающих при эксплуатации детали.
- б) удаление припуска с обрабатываемой поверхности детали.
- в) исправление погрешности формы детали.
- 5. Какие параметры характеризуют поверхностное дорнование?
- а) натяг, сила тяги (сила дорнования);
- б) относительный натяг, осевая составляющая силы деформирования;
- в) скорость дорнования, геометрические характеристики дорна.

Оценка	Показатели оценки
3	10-11 баллов
4	12-13 баллов
5	14-15 баллов

Форма контроля: Письменный опрос (Опрос)

Описательная часть:

Задание №1

Инструкция

- 1. Внимательно прочитайте задание, ознакомьтесь с критериями оценки
- 2. При выполнении задания не разрешается пользоваться дополнительной справочной, учебной литературой, источниками Internet
- 3. Напишите ответы на заданные вопросы
- 4. Общее время выполнения заданий 20 минут

Письменно ответить на два вопроса:

- 1. Назовите области применения хонингования.
- 2. Перечислите факторы, влияющие на производительность и качественные характеристики поверхности детали при хонинговании.
- 3. Как определяется длина абразивных брусков хонинговальной головки?
- 4. Какие факторы определяют выбор абразивного материала и зернистость хонинговальных брусков?
- 5. В каких случаях применяются алмазные бруски и бруски из эльбора?
- 6. Назовите области применения суперфиниширования.
- 7. Приведите схему движений детали и бруска при суперфинишировании.
- 8. Какие факторы влияют на производительность и качественные характеристики поверхности детали при суперфинишировании?
- 9. Как осуществляется выбор зернистости брусков при суперфинишировании?
- 10. Перечислите преимущества обработки поверхностей ультразвуковым суперфинишированием.
- 11. Назовите области применения доводки.
- 12. Перечислите виды доводки.
- 13. Что собой представляют пасты и суспензии?
- 14. Классифицируйте доводочные пасты.
- 15. Назовите области применения алмазных паст.
- 16. Притиры. Их конструкции, назначение
- 17. Перечислите специальные виды абразивной обработки.
- 18. В чем суть электролитического шлифования? Когда его применение наиболее целесообразно?
- 19. Поясните принцип электроалмазного и электроискрового шлифования.
- 20. Что такое ультразвуковое и вибрационное шлифование?
- 21. Когда используют магнитоабразивное полирование? В чем его суть?
- 22. Каков принцип виброабразивной обработки и ее назначение?
- 23. Струйная, экструзионная и турбоабразивная обработки что это за технологии? Какова цель их применения?
- 24. Перечислите основные перспективные направления развития абразивной обработки и охарактеризуйте их.
- 25. В чем суть комбинированных методов обработки?
- 26. В каких случаях выгодно использовать комбинированные методы обработки?

Оценка	Показатели оценки
3	Обучающийся усвоил основное содержание учебного материала по данной теме, имеет пробелы в усвоении материала, не препятствующие дальнейшему усвоению программного материала; допустил ошибки и неточности в использовании научной терминологии, определения понятий дал недостаточно четкие.
4	Обучающийся допустил незначительные ошибки и недочеты при воспроизведении изученного материала, определения понятий неполные, небольшие неточности при использовании научных терминов
5	Обучающийся последовательно, обоснованно и безошибочно воспроизвел учебный материал по данной теме; владеет профессиональной терминологией