Перечень теоретических и практических заданий к экзамену по ПОД.13 Физика

(1 курс, 2 семестр 2022-2023 уч. г.)

Форма контроля: Письменный опрос (Опрос)

Описательная часть: Выполнить два теоретических и два практических задания.

Перечень теоретических заданий:

Залание №1

В некоторую точку пространства приходят когерентные волны с оптической разностью хода 6 мкм. Определить - произойдет усиление или ослабление света в данной точке, если длина волны равна 480 нм.

Оценка	Показатели оценки
3	Записано условие максимума. Ответ не получен или он неверный.
4	Приведен правильный и полный ответ с небольшим недочетом.
5	Приведен правильный и полный ответ.

Задание №2

Задание на нахождение соответствия, например (один из вариантов) Установите соответствие между понятиями: 1 и 2 групп:

1 группа:физическое явление, гипотеза, закон, теория, вещество, взаимодействие,

2 группа: Свет поглощается не непрерывно, а порциями; Учение, система идей или принципов;

Вода, древесина, пластмасса; Ускорение пропорционально приложенной силе и обратно пропорционально массе тела;

Процессы обмена веществом, энергией, информацией, деятельностью; Расширение тел при нагревании;

Оценка	Показатели оценки
3	Приведены в соответствие 2-3 понятия
4	Приведены в соответствие 4-5 понятий
5	Приведены в соответствие все 6 понятий

Залание №3

Теоретический вопрос на определение основных понятий геометрической и волновой оптики:

Ответить на один из вопросов:

- 1) Определение понятий световой луч; отражение света, диффузное и зеркальное отражение; графическая модель отражения света;
- 2)Записать формулировку закона отражения света, закона прямолинейного распространения света;
- 3)Дать определение понятий: преломление света, показатели преломления (абсолютный и относительный), полное отражение, предельный угол полного отражения;
- 4)Сформулировать закон преломления света; записать уравнение для расчета предельного угла полного отражения;
- 5)Нарисовать графическую модель преломления света на границе раздела двух сред,
- 6)Дать определение понятий линза, собирающие и рассеивающие линзы, тонкая линза, оптический центр, оптические оси, фокусы линзы, фокусное расстояние, оптическая сила линзы;
- 7)Записать формулу тонкой линзы и правило знаков;
- 8)Графическая модель получения изображения в линзе; ход известных лучей.
- 9)Построить изображение в тонкой собирающей и рассеивающей линзах
- 10) Дайте определение интерференции света. Какие источники света называют когерентными?
- 11) Каким способом получают когерентные световые волны?Почему не могут интерферировать волны, идущие от двух независимых источников света?
- 12) Какое световое излучение называется монохроматическим?
- 13)Сформулируйте условия усиления и ослабления интерферирующих световых волн.
- 14)Где используется явление интерференции света?
- 15)В чем состоит явление дифракции света? При каких условиях наблюдается дифракция света?
- 16) Что представляет собой дифракционная решетка? Какой вид имеет дифракционная картина, полученная с помощью дифракционной решетки при освещении

ее монохроматическим светом? при овещении белым светом?

17) Приведите формулу дифракционной решетки. Как определяется длина световой волны с помощью дифракционной решетки?

. Например:

В чем состоит явление дифракции света? При каких условиях наблюдается дифракция света?

Ответ:

Дифракция волн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое можно рассматривать

как отклонение от законов геометрической оптики при распространении волн. Первоначально понятие дифракции относилось только к огибанию волнами препятствий,

но в современном, более широком толковании, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн в неоднородных средах,

а также при распространении ограниченных в пространстве волн. Дифракция тесно связана с явлением интерференции. Более того, само явление дифракции зачастую

трактуют как частный случай интерференции (интерференция вторичных волн) . Наиболее сильно они проявляются при размерах неоднородностей сравнимых с

длиной волны. При размерах неоднородностей существенно превышающих длину волны (на 3-4 порядка и более), явлением дифракции, как правило, можно пренебречь

Оценка	Показатели оценки
3	Дано определение дифракции
4	Дано определение дифракции и условия ее наблюдения, но в ответе содержатся неточности или ответ не полный.
5	Полный и правильный ответ.

Задание №4

Теоретический вопрос на определение основных понятий волновой (электромагнитной) теории.

Ответить на один из вопросов:

- 1) Что такое электромагнитные колебания? Что называется колебательным контуром?
- 2) Записать уравнение электромагнитных колебаний. Какие велиины входят в это уравнение?
- 3) Записать и объяснить формулу Томсона.
- 4)Сформулировать гипотезу Максвелла. Дать определение электромагнитного поля.
- 5) Электромагнитная волна. Свойства ЭМВ. Диапазоны ЭМВ.
- 6) Что такое радиоволны? Каковы их сойства?
- 7) Принципы радиосвязи (модуляция и детектирование)
- 8) Что такое радиолокация? Что можно определить с помощью радиолокатора?

Например:

Что такое электромагнитная волна? Свойства ЭМВ. Перечислите основные диапазоны ЭМВ.

Примерный ответ:

Электромагнитное поле - это совокупность электрического и магнитного полей, поэтому в каждой точке своего пространства оно описывается двумя основными величинами:

напряженностью электрического поля E и индукцией магнитного поля B.

Так как электромагнитное поле представляет собой процесс превращения электрического поля в магнитное, а затем

магнитного в электрическое, то его состояние постоянно меняется. Распространяясь в пространстве и времени,

оно образует электромагнитные волны. Источником ЭМВ служат заряды. движущиеся с ускорением.

В зависимости от частоты и длины эти волны разделяют на радиоволны,

терагерцовое излучение, инфракрасное излучение, видимый свет, ультрафиолетовое излучение,

рентгеновское и гамма-излучение. Свойства ЭМВ: распространяются с постоянной скоростью c=300000 км/с(в вакууме).

Обладают нергией и импульсом. Проявляют свойства отражения и преломления, дисперсии, интерференции и дифракции.

Электромагнитная волна-поперечная.

Векторы напряженности и индукции электромагнитного поля взаимно перпендикулярны, а плоскость в которой они лежат, перпендикулярна направлению распространения волны.

Оценка	Показатели оценки
3	Дано определение ЭМВ.
4	Дано определение и перечислены основные свойства ЭМВ.
5	Дан полный и содержательный ответ, перечислены свойства и диапазоны ЭМВ.

Задание №5

Теоретический вопрос на определение основных понятий квантовой оптики.

Ответить на один из вопросов:

- 1. 1. Что изучает квантовая оптика? Как она рассматривает свет? Чему равна энергия и импульс фотона? Раскройте физическую сущность корпускулярно-волнового дуализма света.
- 2. 2. Сформулировать квантовую гипотезу Планка. Что такое фотоны, каковы их свойства?
- 3. 3.Какое явление называется фотоэффектом? Внутренним фотоэффектом? Сформулируйте законы внешнего фотоэффекта. Дайте определение красной границы фотоэффекта. Как вы понимаете безынерционность фотоэффекта? Дайте определение задерживающего напряжения.
- 4. 4. Дайте объяснение давлению света на поверхность тела с точки зрения волновой и квантовой теорий. Кто впервые экспериментально измерил давление света? Как вычислить давление света на поверхность?
- 5. 5.В чем заключается химическое действие света? Как оно проявляется? Какую роль в жизни растений и микроорганизмов играет фотосинтез? Расскажите о получении фотографии и ее применении.

Например: Сформулировать квантовую гипотезу Планка. Что такое фотоны, каковы их свойства?

Примерный ответ:

Гипотеза Планка — является предположением того, что <u>атомы</u> испускают электромагнитную энергию

(свет) отдельными порциями — квантами, а не непрерывно.

Энергия каждой порции является пропорциональной частоте излучения: E = hv, где $h = 6.63 \cdot 10-34 \, \text{Дж} \cdot \text{с}$

является постоянной Планка, у — является частотой света. Квантовая теория начала

развиваться после открытия

Планка. Гипотеза Планка нашла экспериментальной подтверждение в открытии фотоэффекта, фотохимических реакций, давлении света, явлении люминесценции.

Основные свойства фотона	
 Является частицей электромагнитного поля. Движется со скоростью света. Существует только в движении. Остановить фотон нельзя: он либо движется со скоростью, равной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю. 	
Энергия фотона: $E = h \nu$ или $E = \hbar \omega$	$\mathbf{E} = \mathbf{h} \mathbf{v}$
Согласно теории относительности энергия всегда может быть вычислена как $E = mc^2$	$m = \frac{h\nu}{c^2}$
Отсюда - <i>масса фотона</i> . $m = \frac{h\nu}{c^2}$	$\mathbf{p} = \frac{\mathbf{n}}{\lambda}$
$_{\it Импульс фотона} { m p = mc = rac{h u}{c} = rac{h}{\lambda}}$	
Импульс фотона направлен по световому пучку.	
Наличие импульса подтверждается	
экспериментально: существованием светового	
давления.	

Оценка	Показатели оценки
3	Сформулирована гипотеза Планка.
4	Сформулирована гипотеза Планка и указаны открытия, являющиеся ее подтверждением.
5	Сформулирована гипотеза Планка и указаны открытия, являющиеся ее подтверждением. Перечислены свойства фотона.

Задание №6

Сформулируйте квантовые постулаты Бора. Как происходит излучение и поглощение света атомом? Недостатки теории Бора.

Оценка	Показатели оценки
3	Сформулированы постулаты Бора.
4	Сформулированы постулаты Бора. Дано объяснение излучения и поглощения света атомом.
5	Сформулированы постулаты Бора. Дано объяснение излучения и поглощения света атомом. Перечислены недостатки теории Бора.

Задание №7

Явления, подтверждающие сложную структуру атома. Опыты Резерфорда. Планетарная модель атома, ее противоречия.

Оценка	Показатели оценки
3	Перечислены явления, подтверждающие сложную структуру атома.
4	Перечислены явления, подтверждающие сложную структуру атома. Рассказано о сути опытов Резерфорда.
5	Перечислены явления, подтверждающие сложную структуру атома. Рассказано о сути опытов Резерфорда. Объяснена планетарная модель атома и указаны ее недостатки.
	Объяснена планетарная модель атома и указаны ее недостатки.

Задание №8

Рассказать о методах регистрации ионизирующих излучений (счетчик Гейгера, Камера Вильсона, пузырьковая камера,

метод фотоэмульсий). Что можно узнать по треку частицы?

Оценка	Показатели оценки
3	Рассказано не менее чем о двух методах регистрации.
4	Рассказано о четырех методах регистрации.
5	Рассказано о 4методах регистрации ионизирующих излучений, перечислены характеристики,
	которые можно определить по фотографии трека частицы.

Задание №9

Дать определение понятиям: планета, звезда, галактика, Вселенная. Привести примеры.

Оценка	Показатели оценки
3	Даны определения как минимум двум понятиям.
4	Даны определения трем понятиям.
5	Даны определения всем понятиям и приведены примеры.

Задание №10

Два заряда, находясь на расстоянии 0.05 м действуют друг на друга с силой $1.2\cdot10-4$ H,

а в некоторой непроводящей жидкости на 0,12 м с силой 1,5 ·10-5 Н.

Какова диэлектрическая проницаемость жидкости?

	Anone Anone in the industries in Andree in the industries in the i	
Оценка	Показатели оценки	
3	Записан закон Кулона для вакуума и для среды.	
4	Записан закон Кулона для вакуума и для среды. Задача решена в общем виде.	
5	Записан закон Кулона для вакуума и для среды.	
	Задача решена в общем виде и числовом выражении.	
	Выполнена проверка размерности.	

Задание №11

В однородном электрическом поле находится пылинка массой $40 \cdot 10^{-8}$ г. обладает зарядом $1,6 \cdot 10^{-11}$ Кл. Какой должна быть по величине напряженность поля, чтобы пылинка осталась в покое.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (Второй закон Ньютона, связь силы Кулона и напряженности). Не сделан чертеж или на чертеже есть ошибки. Или: В расчетах есть ошибка или не более двух недочетов. Не сделана проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. Сделан верный чертеж и расчет .В расчете допущен недочет или арифметическая ошибка. или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан верный чертеж и расчет. Выполнена проверка размерности.

Задание №12

Рассказать об изобретении радио А.С.Поповым. Как устроены радиопередатчик и радиоприемник?

Что такое модуляция и детектирование?

Оценка	Показатели оценки
3	Рассказано об изобретении радио- назван автор открытия и год изобретения.
4	Рассказано об изобретении радио- назван автор открытия и год изобретения.
	Объяснено устройство и принцип действия передатчика и приемника
5	Рассказано об изобретении радио- назван автор открытия и год изобретения.
	Объяснено устройство и принцип действия передатчика и приемника.
	Дано определение модуляции и детектирования.

Перечень практических заданий: Залание №1

Какую площадь должны иметь пластины плоского конденсатора для того чтобы его электроемкость была равна 2 мк Φ , если между пластинами помещается слой слюды толщиной 0,2 мм? (ε =7).

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (электроемкость плоского конденсатора). Выполнены необходимые математические преобразования. В расчетах есть ошибка (не переведены единицы измерения в СИ) или не более двух недочетов. Не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. (электроемкость плоского конденсатора). Выполнены необходимые математические преобразования. Сделан расчет .В расчете допущен недочет или арифметическая ошибка. или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. (электроемкость плоского конденсатора). Выполнены необходимые математические преобразования. Сделан верный расчет. Выполнена проверка размерности.

Задание №2

Чем отличается гипотеза от теории?

Приведите пример, когда гипотеза находила свое подтверждение. становясь теорией.

Примерный ответ:

Гипотеза – это утверждение, достоверность которого требуется доказать.

Она выдвигается как попытка объяснить какое-либо явление.

При этом предполагается, что вероятность правдивости такого суждения достаточно высока.

Теория – это система взаимосвязанных положений, которая разрабатывается для обоснования существующих явлений и фактов. Теория создается с применением научного метода на основе экспериментальных фактов.

Пример такой системы – гипотеза Максвелла о существовании электромагнитного поля

была подтверждена открытием электромагнитных волн Генрихом Герцем. После этого гипотеза Максвелла

превратилась в теорию электромагнитного поля.

Оценка	Показатели оценки
3	Дано определение одному понятию.
4	Дано определение двум понятиям и показана разница между ними.
5	ано определение двум понятиям и показана разница между ними. Приведен пример
	гипотеза-теория.

Задание №3

Емкость конденсатора колебательного контура равна 0,02 мк Φ , максимальное значение напряжения

на его обкладках 500 В.

Определите максимальное значение электрической энергии в контуре и индуктивность катушки,

если сила тока в контуре 5 А. Сделать проверку размерности.

Оценка	Показатели оценки
3	Записаны формулы максимальной энергии электрического и магнитного полей.
	Определена максимальная энергия электрического поля конденсатора

4	Записаны формулы максимальной энергии электрического и магнитного полей.
	Определена максимальная энергия электрического поля конденсатора и индуктивность катушки.
5	Записаны формулы максимальной энергии электрического и магнитного полей.
	Определена максимальная энергия электрического поля конденсатора и индуктивность катушки.
	Выполнена проверка размерности.

Залание №4

Прочитать текст из научно-популярной статьи (сообщения СМИ, статьи интернета). Ответить на вопросы к тексту

Пример:

Открытие рентгеновских лучей

Рентгеновские лучи были открыты в 1895 г. немецким физиком Вильгельмом Рентгеном. Рентген заметил, что при торможении быстрых электронов на любых препятствиях возникает сильно проникающее излучение, которое ученый назвал Х-лучами (в дальнейшем за ними утвердится термин «рентгеновские лучи»). Когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки.

Схема современной рентгеновской трубки для получения X-лучей представлена на рисунке. Катод 1 представляет собой подогреваемую вольфрамовую спираль, испускающую электроны. Поток электронов фокусируется с помощью цилиндра 3, а затем соударяется с металлическим электродом (анодом) 2. При торможении электронов пучка возникают рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10⁻⁵ мм рт. ст.

Согласно проведенным исследованиям, рентгеновские лучи действовали на фотопластинку, вызывали ионизацию воздуха, не взаимодействовали с электрическими и магнитными полями. Сразу же возникло предположение, что рентгеновские лучи — это электромагнитные волны, которые в отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей имеют гораздо меньшую длину волны. Но если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию — явление, присущее всем видам волн. Дифракцию рентгеновских волн удалось наблюдать на кристаллах. Кристалл с его периодической структурой и есть то устройство, которое неизбежно должно вызвать заметную дифракцию рентгеновских волн, так как длина их близка к размерам атомов.

- 1.Согласно тексту, рентгеновские лучи образуются
- 1) при распространении электронов в вакууме

- 2) при распространении электронов в газах
- 3) при резком торможении быстрых электронов на препятствии
- 4) при взаимодействии электронов с молекулами газа
- 2. Что является доказательством волновой природы рентгеновских лучей?
- 1) высокая проникающая способность рентгеновских лучей
- 2) взаимодействие с электрическим полем
- 3) взаимодействие с магнитным полем
- 4) дифракция на кристаллах
- 3. Какова природа рентгеновских лучей?

рентгеновские лучи — это электромагнитные волны, которые в отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей имеют гораздо меньшую длину волны

4. Какие волновые явления присущи рентгеновскому излучению?

рентгеновское излучение представляет собой электромагнитные волны, оно обнаруживает дифракцию, интерференцию, поляризацию- то есть — явления, присущие всем видам волн.

Оценка	Показатели оценки
3	Текст понят верно, в ответах на вопросы содержатся ошибки.
4	Текст понят верно, в ответах содержатся один-два недочета.
5	Текст понят и проанализирован. Ответы на вопросы полные и исчерпывающие.

Задание №5

Определите радиус кривизны траектории электрона влетевшего в поле со скоростью 100 км/c

перпендикулярно к нему, если B = 0.5 Тл.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (второй закон Ньютона, сила Лоренца). Сделаны необходимые математические преобразования. В преобразованиях или расчетах есть ошибки приводящие к неверному ответу. е выполнена проверка размерности или перевод в СИ.
4	Записаны необходимые и достаточные для решения задачи формулы. (второй закон Ньютона, сила Лоренца). Сделаны необходимые математические преобразования и расчеты. В преобразованиях или расчетах есть недочеты; или: не выполнена проверка размерности.

Записаны необходимые и достаточные для решения задачи формулы.(второй закон Ньютона, сила Лоренца). Сделаны необходимые математические преобразования. Сделан верный расчет. Выполнена проверка размерности.

Задание №6

Вольтметр рассчитан на измерение напряжений до максимального значения 30 В. При этом через вольтметр идет ток 10 мА. Какое добавочное сопротивление нужно присоединить к вольтметру, чтобы им можно было измерять напряжение до 150 В?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (расчет добавочного сопротивления). В расчетах есть ошибка или не более двух недочетов. Не выполнена проверка размерности
4	Записаны необходимые и достаточные для решения задачи формулы(расчет добавочного сопротивления) Сделан расчет .В расчете допущен недочет или арифметическая ошибка. Или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы (расчет добавочного сопротивления) Сделан верный расчет. Выполнена проверка размерности.

Задание №7

Перечислить факторы воздействия радиации на организм человека и методы защиты от радиации

Пример ответа:

факторы воздействия радиации

- 1. Время чем меньше продолжительность воздействия, тем лучше;
- 2. Расстояние чем дальше от источника радиации, тем лучше;
- 3. Преграды чем больше препятствий между человеком и источником радиоактивного излучения, тем лучше

Методы защиты:	
Физические:	
Защита временем	
Защита расстоянием	

Защита экранированием

Деактивация продуктов, объектов

Защита органов дыхания и кожи

Вентиляция помещений чистым (незараженным) водухом

Химические

Использование радиопротекторов

Использование медпрепаратов

Санитарно-гигиенические мероприятия

Использование защитных материалов

Биологические:

использование продуктов, связывающих радионуклиды

использование витаминов

ускорение процессов выведения радионуклидов из организма

Оценка	Показатели оценки
3	В приведенных факторах и методах содержатся недочеты или ответы неполные (не менее 2/3 правильных ответов).
4	В примерах содержатся один-два недочета.
5	Приведены примеры полные и исчерпывающие.