

Министерство образования Иркутской области Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Иркутский авиационный техникум»

УТВЕРЖДАЮ и.о. директора ГВГОУИО «ИАТ»

// /Коробкова Е.А.

«31» мая 2019 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

ПОД.12 Физика

специальности

15.02.15 Технология металлообрабатывающего производства

Рассмотрена цикловой комиссией ОД, МЕН протокол №10 от $20.03.2019~\Gamma$.

Председатель ЦК

/Г.В. Перепияко /

No॒	Разработчик ФИО
1	Бурлак Елена Евгеньевна

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Область применения фонда оценочных средств (ФОС)

ФОС по дисциплине является частью программы подготовки специалистов среднего звена по специальности 15.02.15 Технология металлообрабатывающего производства

1.2. Место дисциплины в структуре ППССЗ:

ПОД.00 Профильные общеобразовательные дисциплины.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины

Результаты освоения дисциплины	№ Результата	Формируемый результат
Личностные результаты	1.1	российскую гражданскую идентичность, патриотизм, уважение к своему народу, чувства ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн);
	1.2	гражданскую позицию как активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности;
	1.3	готовность к служению Отечеству, его защите;
	1.4	сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
	1.5	сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества;

	готовность и способность к самостоятельной,
	творческой и ответственной деятельности;
1.6	толерантное сознание и поведение в поликультурном
	мире, готовность и способность вести диалог с
	другими людьми, достигать в нем взаимопонимания,
	находить общие цели и сотрудничать для их
	достижения, способность противостоять идеологии
	экстремизма, национализма, ксенофобии,
	дискриминации по социальным, религиозным,
	расовым, национальным признакам и другим
	негативным социальным явлениям;
1.7	навыки сотрудничества со сверстниками, детьми
	младшего возраста, взрослыми в образовательной,
	общественно полезной, учебно-исследовательской,
	проектной и других видах деятельности;
1.8	нравственное сознание и поведение на основе
1.0	усвоения общечеловеческих ценностей;
1.0	
1.9	готовность и способность к образованию, в том числе
	самообразованию, на протяжении всей жизни;
	сознательное отношение к непрерывному
	образованию как условию успешной
	профессиональной и общественной деятельности;
1.10	эстетическое отношение к миру, включая эстетику
	быта, научного и технического творчества, спорта,
	общественных отношений;
1.11	принятие и реализацию ценностей здорового и
	безопасного образа жизни, потребности в физическом
	самосовершенствовании, занятиях спортивно-
	оздоровительной деятельностью, неприятие вредных
	привычек: курения, употребления алкоголя,
	наркотиков;
1.12	бережное, ответственное и компетентное отношение
	к физическому и психологическому здоровью, как
	собственному, так и других людей, умение оказывать
	первую помощь;
1.13	осознанный выбор будущей профессии и
1.10	возможностей реализации собственных жизненных
	планов; отношение к профессиональной деятельности
	как возможности участия в решении личных,
	Ruk Bosmownoeth y lucthin b pellennin in hibix,

		общественных, государственных, общенациональных проблем;
	1.14	сформированность экологического мышления, понимания влияния социально-экономических процессов на состояние природной и социальной среды; приобретение опыта эколого-направленной деятельности;
	1.15	ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни.
Метапредметн ые результаты	2.1	умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
	2.2	умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
	2.3	владение навыками познавательной, учебно- исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
	2.4	готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
	2.5	умение использовать средства информационных и коммуникационных технологий (далее - ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

	2.6	умение определять назначение и функции различных социальных институтов;
	2.7	умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;
	2.8	владение языковыми средствами - умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
	2.9	владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения;
Предметные результаты	3.1	сформированность представлений о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
	3.2	владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
	3.3	владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
	3.4	сформированность умения решать физические задачи;
	3.5	сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
	3.6	сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

В результате освоения дисциплины обучающийся должен	№ дидакти ческой единицы	Формируемая дидактическая единица
Знать	1.1	смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
	1.2	смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
	1.3	смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
	1.4	вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики
Уметь	2.1	описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
	2.2	отличать гипотезы от научных теорий;
	2.3	делать выводы на основе экспериментальных данных;
	2.4	приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
	2.5	приводить примеры практического использования

	физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
2.6	воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Ин-тернете, научно-популярных статьях;
2.7	применять полученные знания для решения физических задач;
2.8	определять характер физического процесса по графику, таблице, формуле;
2.9	измерять ряд физических величин, представляя результаты измерений с учетом их погрешностей;
2.10	использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи; оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и защиты окружающей среды.

2. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

2.1 Текущий контроль (ТК) № 1

Тема занятия: 2.1.7. Контрольная работа по кинематике.

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа

Дидактическая единица: 1.2 смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

Занятие(-я):

- 2.1.1.Основные понятия кинематики. Равномерное прямолинейное движение (уравнение, графики).. Принцип относительности Галилея. Сложение перемещений и скоростей.
- 2.1.2. Решение задач на РПД и относительность и сложение скоростей.
- 2.1.3. Прямолинейное равноускоренное движение (уравнения, графики). свободное падение, как пример ПРУД.
- 2.1.4. Решение графических и аналитических задач на ПРУД
- 2.1.5. Криволинейное движение. Движение по окружности. Угловая скорость, период, частота. Центростремительное (нормальное) ускорение.
- 2.1.6. Движение тела, брошенного горизонтально. Движение тела брошенного под углом к горизонту

Задание №1

- 1) Что такое РПД?
- 2) Запишите уравнение равномерного прямолинейногго движения
- 3) Постройте график зависимости x(t) для РПД.

Оценка	Показатели оценки	
3	Дан ответ только на два вопроса или в ответе есть ошибки	
4	Дан ответ на все вопросы, но в ответе содержатся недочеты	
5	Дан верный ответ на три вопроса	

Задание №2

Лодка плывет перпендикулярно течению со скоростью 4 км/час, скорость течения - 3 км/час. Какова скорость лодки относительно берега? Сделать чертеж.

Оценка	Показатели оценки

3	Записан закон сложения скоростей в векторной форме. Решение выполнено, но только в числовом виде или в проекции на оси координат допущена ошибка. Или: чертежа нет или он неверен. Или: в расчете допущена грубая математическая ошибка. Не выполнена проверка размерности.
4	Записан закон сложения скоростей в векторной форме и в проекции на оси координат. Сделан чертеж. Задача решена в общем и числовом виде. Есть недочеты (на чертеже не указаны параметры движения) или арифметическая ошибка в расчете. Или не выполнена проверка размерности.
5	Записан закон сложения скоростей в векторной форме и в проекции на оси координат. Задача решена в общем виде (векторная и скалярная формы) и в числовом. Сделан верный чертеж. Выполнена проверка размерности.

Дайте определение понятий:

1)Скорость 2) Ускорение 3) Перемещение 4) Система отсчета 5) Материальная точка

Оценка	Показатели оценки
3	Дано верное определение 4 понятиям, или в определении есть ошибка
4	Дано определение всем понятиям, но в ответе есть неточности
5	Дано верное определение всем понятиям

Дидактическая единица: 2.7 применять полученные знания для решения физических задач;

Занятие(-я):

- 2.1.2. Решение задач на РПД и относительность и сложение скоростей.
- 2.1.4.Решение графических и аналитических задач на ПРУД
- 2.1.5. Криволинейное движение. Движение по окружности. Угловая скорость, период, частота. Центростремительное(нормальное) ускорение.
- 2.1.6. Движение тела, брошенного горизонтально. Движение тела брошенного под углом к горизонту

Задание №1

Во сколько раз увеличится время падения, если высота, с которой свободно падает камень, увеличится в 4 раза?

Оценка Показатели оценки	
--------------------------	--

3	Записаны необходимые и достаточные для решения задачи формулы (уравнение движения тела, падающего без начальной скорости, формула для расчета времени движения). В расчетах есть математическая ошибка или не более двух недочетов.
4	Записаны необходимые и достаточные для решения задачи формулы (уравнение движения тела, падающего без начальной скорости, формула для расчета времени движения).Сделан расчет. В расчете содержатся недочеты, не приводящие к ошибочному ответу, или не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы(уравнение движения тела, падающего без начальной скорости, формула для расчета времени движения). Сделан расчет, получен правильный ответ. Выполнена проверка размерности.

Задание №2 Мяч брошен горизонтально с высоты 25 м. Какова начальная скорость и время полета мяча, если он упал на расстоянии 10 м от места бросания по горизонтали.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные формулы для решения задачи (высота и дальность полета тела, брошенного горизонтально). Не сделаны необходимые математические преобразования (нахождение начальной скорости или времени полета мяча), или в них содержится ошибка. Или: нет расчетов в числовом виде, или в расчетах допущена грубая ошибка, приводящая к неправильному ответу. Нет проверки
4	размерности. Записаны необходимые и достаточные формулы для решения задачи (высота и дальность полета тела, брошенного горизонтально), сделаны необходимые математические преобразования. Выполнен расчет, в котором есть недочеты (не более двух), не приводящие к неверному ответу. Или не сделана проверка размерности.
5	Записаны необходимые и достаточные формулы для решения задачи (высота и дальность полета тела, брошенного горизонтально), сделаны необходимые математические преобразования. Выполнен расчет, Задача решена верно в общем и в числовом виде. Выполнена проверка размерности.

Точка движется по окружности радиусом 0,3 м с периодом 6,28 с. Найти линейную и угловую скорость точки, ее нормальное ускорение

Оценка	Показатели оценки
3	Записаны необходимые и достаточные формулы для решения задачи (формулы линейной и угловой скорости, нормального ускорения). Нет расчетов, или в расчетах допущена грубая ошибка, приводящая к неверному ответу, не выполнгена проверка размерности.
4	Записаны необходимые и достаточные формулы для решения задачи (формулы линейной и угловой скорости, нормального ускорения) В расчетах допущены недочеты (не более двух) не приводящие к неверному ответу, или проверка размерности сделана не для всех параметров
5	Записаны необходимые и достаточные формулы для решения задачи. Все расчеты выполнены без ошибок, сделана проверка размерности.

Дидактическая единица: 2.8 определять характер физического процесса по графику, таблице, формуле;

Занятие(-я):

- 2.1.2. Решение задач на РПД и относительность и сложение скоростей.
- 2.1.3. Прямолинейное равноускоренное движение (уравнения, графики). свободное падение, как пример ПРУД.
- 2.1.5. Криволинейное движение. Движение по окружности. Угловая скорость, период, частота. Центростремительное (нормальное) ускорение.
- 2.1.6. Движение тела, брошенного горизонтально. Движение тела брошенного под углом к горизонту

Задание №1

Движение двух тел задано уравнениями: x1=3+0,5t, x2=8-2t. Описать характер движения тел. Найти время и координату места встречи графически и аналитически.

Оценка	Показатели оценки
	Не описан характер движения. Задача решена только аналитически или только графически. Или: неверно определен один из параметров(время или координата)

Верно описан характер движения тел. Задача решена только одним способом (графически или аналитически). Определено время и место встречи тел. Или: на графике есть недочеты, не приводящие к неверному ответу.
Верно описан характер движения тел. задача решена аналитически и графически. Найдено время и место встречи тел.

Движение двух тел описывается уравнениями: X1 = 2t + 0.2 t 2 u X2 = 80 - 4t. (Все величины записаны в СИ)

- описать характер их движения
- записать уравнения скорости для каждого из тел
- построить графики зависимости их координаты от времени

Оценка	Показатели оценки
3	Верно описан характер движения тел. Записаны уравнения скорости.
4	Верно описан характер движения тел. Записаны уравнения скорости. Построены графики координат. В решении или на графике есть недочеты (не более двух), не приводящие к неверному ответу.
5	Верно описан характер движения тел. Записаны уравнения скорости. Построены графики координат Все задания выполнены верно без недочетов.

Дидактическая единица: 2.5 приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров; **Занятие(-я):**

1.1.1. Предмет и методы физики. Связь физики с другими науками и техникой. Физические величины и их измерение.

Задание №1

Автомобиль движется со скоростью 72 км/ч. Приближаясь к пешеходному переходу он начинает торможение с ускорением 4 м/с2. Расчитать тормозной путь. Привести пример, показывающий, что перебегать дорогу перед идущим транспортом опасно.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (уравнение равнозамедленного движения). В расчетах есть математическая ошибка или не более двух недочетов. Либо не приведен пример.
4	Записаны необходимые и достаточные для решения задачи формулы (уравнение равнозамедленного движения). В расчетах есть не более двух недочетов.
5	Записаны необходимые и достаточные для решения задачи формулы (уравнение равнозамедленного движения). Сделан расчет, получен правильный ответ. Выполнена проверка размерности. Приведен пример.

Залание №2

- 1)Приведите пример равноускоренного движения.
- 2) Как рассчитать тормозной путь транспорта?
- 3) Как рассчитать необходимую для взлета самолета длину взлетной полосы?

Оценка	Показатели оценки
3	дан верныый ответ на два вопроса
4	Дан верный ответ на три вопроса, но в ответе имеются недочеты
5	Дан верный ответ на все три вопроса

2.2 Текущий контроль (ТК) № 2

Тема занятия: 2.2.7. Контрольная работа по теме "Динамика"

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа

Дидактическая единица: 1.3 смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

Занятие(-я):

- 2.2.2.Закон всемирного тяготения, границы его применимости. Сила тяжести. Первая космическая скорость. ИСЗ.
- 2.2.4. Решение задач на законы Ньютона, закон Всемирного тяготения и закон Гука.

Задание №1

Сформулируйте три закона Ньютона. К каждому приведите пример.

Оценка	Показатели оценки

	Дан верный ответ на два вопроса, или в ответах отсутствуют примеры.
4	Дан верный ответ на все три вопроса, но в ответах есть недочеты
5	Дан верный ответ на три вопроса, приведены примеры.

Воздушный шар массой 50 кг движется вертикально вверх под действием силы Архимеда, которая равна 550 Н. Определите ускорение шара.

Оценка	Показатели оценки
3	Сделан чертеж, указаны силы, записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона в векторной форме и в проекциях). Не выполнены необходимые математические преобразования для определение ускорения шара, или в них содержится ошибка. Или в расчетах есть ошибка или не выполнен перевод единиц в СИ. Не сделана проверка размерности.
4	Сделан чертеж, указаны силы, записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона в векторной форме и в проекциях). Выполнены необходимые математические преобразования для определение ускорения шара. Сделан перевод единиц в СИ, выполнен расчет. В расчете допущен недочет или арифметическая ошибка. Или: Не выполнена проверка размерности.
5	Сделан чертеж, указаны силы, записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона в векторной форме и в проекциях). Выполнены необходимые математические преобразования для определение ускорения шара. Сделан перевод единиц в СИ, выполнен верный расчет и проверка размерности

Задание №3

На пружине жесткостью 40 Н/м висит груз массой 200 г. Определите длину пружины. В недеформированном состоянии длина пружины равна 10 см.

Оценка Показатели оценки	
--------------------------	--

3	Записаны необходимые и достаточные для решения задачи формулы (закон Гука, сила тяжести, 2 закон Ньютона). Не выполнены математические преобразования (нахождение длины деформированной пружины) В математических преобразованиях или расчетах есть ошибка, приводящая к неправильному ответу. Или: не выполнен перевод единиц в СИ, не сделана проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы(закон Гука, сила тяжести, 2 закон Ньютона). Выполнены математические преобразования(нахождение длины деформированной пружины). Сделан перевод единиц в СИ. Сделан расчет. В расчете допущен недочет или арифметическая ошибка, не приводящая к неверному ответу. или . Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы(закон Гука, сила тяжести, 2 закон Ньютона). Выполнены математические преобразования(нахождение длины деформированной пружины). Сделан верный расчет. Выполнена проверка размерности.

- 1) Сформулируйте закон Гука (формула, формулировка).
- 2) Для каких деформаций он применим? Приведите примеры
- 3) Какова природа силы упругости, к чему она приложена и как направлена?

Оценка	Показатели оценки
3	Дан верный ответ на два вопроса, или в ответах отсутствуют
	примеры.
4	Дан верный ответ на все три вопроса, но в ответах есть недочеты
5	Дан верный ответ на три вопроса, приведены примеры.

Дидактическая единица: 1.1 смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная; **Занятие(-я):**

- 1.1.1.Предмет и методы физики. Связь физики с другими науками и техникой. Физические величины и их измерение.
- 1.1.2.Погрешности прямых и косвенных измерений. Методы расчета погрешностей. **Задание №1**

Что называется инерциальной системой отсчета? Каковы границы применимости этой модели? Приведите примеры тел, которые можно считать ИСО в данных условиях.

Оценка	Показатели оценки
3	Ответ в целом правильный, но неточный (не соответствует приведенному определению), или не приведены границы
	применимости модели, или не приведен пример.
4	Ответ в целом правильный но содержит неточности, не приводящие к искажению сути, приведены примеры, не не даны пояснения.
5	Ответ правильный, содержит определение и границы применимости модели ИСО. Приведены примеры и пояснения к ним.

Дидактическая единица: 2.1 описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

Занятие(-я):

- 2.1.1.Основные понятия кинематики. Равномерное прямолинейное движение (уравнение, графики).. Принцип относительности Галилея. Сложение перемещений и скоростей.
- 2.2.1. Фундаментальные взаимодействия в природе. Законы Ньютона. Инерциальная система отсчета. Инертность и масса тела. Сила, сложение сил.
- 2.2.3.Силы упругости. Закон Гука. Силы реакции опоры и натяжения подвеса. Вес тела. Невесомость и перегрузки.

Задание №1

Лифт массой 300 кг движется вертикально вниз. Сила упругости троса равна 280 Н. Определите ускорение лифта.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи
	формулы (2 закон Ньютона. Вес тела, движущегося с
	ускорением). Не выполнены математические преобразования или
	в них содержится ошибка. Или: В расчетах есть ошибка,
	приводящая к неверному ответу. Не сделана проверка
	размерности.

4	Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона. Вес тела, движущегося с ускорением). Выполнены математические преобразования для расчета ускорения лифта Сделан расчет .В расчете допущен недочет или негрубая арифметическая ошибка. Или :не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона. Вес тела, движущегося с ускорением). Выполнены необходимые математические преобразования. Сделан верный расчет. Выполнена проверка размерности.

Вычислить первую космическую скорость для Земли, если ее сообщают на высоте, равной двум радиусам Землиот ее поверхности.

Оценка	Показатели оценки
3	ВЫерно записаны формулы, но в решении содержится ошибка
4	Верно записаны формулы, решение, но в решении е сть недочеты, или арифметическая негрубая ошибка, или отсутствует проверка размерности
5	Верно записаны формулы, приведено полное правильное решение

Дидактическая единица: 2.7 применять полученные знания для решения физических задач;

Занятие(-я):

- 2.1.7. Контрольная работа по кинематике.
- 2.2.2.Закон всемирного тяготения, границы его применимости. Сила тяжести. Первая космическая скорость. ИСЗ.
- 2.2.4. Решение задач на законы Ньютона, закон Всемирного тяготения и закон Гука.
- 2.2.6. Динамика прямолинейного движения при наличии и отсутствии трения. Динамика движения по окружности. Движение связанных тел.

Задание №1

На каком расстоянии от центра Земли ускорение свободного падения будет равно 2,5 м\c2? Радиус Земли принять равным 6400 км.

Оценка	Показатели оценки

3	Записаны необходимые и достаточные для решения задачи формулы (Закон всемирного тяготения, формула ускорения свободного падения). Не выполнены математические преобразования для расчета расстояния или в них содержится грубая ошибка. Или: В расчетах есть ошибка, приводящая к неверному ответу. Не сделана проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы (Закон всемирного тяготения, формула ускорения свободного падения). Выполнены математические преобразования для расчета расстояния. В расчетах есть ошибка, Или: Не сделана проверка размерности
5	Записаны необходимые и достаточные для решения задачи формулы Закон всемирного тяготения, формула ускорения свободного падения). Выполнены математические преобразования для расчета расстояния. Сделан верный расчет. Выполнена проверка размерности.

Дидактическая единица: 2.3 делать выводы на основе экспериментальных данных;

Занятие(-я):

2.2.2.Закон всемирного тяготения, границы его применимости. Сила тяжести. Первая космическая скорость. ИСЗ.

Задание №1

Подъемный кран поднимает стальную плиту масой 780 кг со дня водоема глубиной 3 м на высоту 5 м над поверхностью воды. При этом сила натяжения троса остается постоянной. Известно, что в воде плита двигалась со скоростью 0, 2 м/с. С каким ускорением двигалась плита в воздухе, если сила сопротивления в воде составила 0,4 от силы тяжести, а в воздухе пренебрежимо мала.

Оценка	Показатели оценки
3	Сделан чертеж, указаны силы. Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона в векторной форме и в проекциях). Не выполнены математические преобразования или в них содержится ошибка. Или: В расчетах есть ошибка, приводящая к неверному ответу. Не сделана проверка размерности.

4	Сделан чертеж, указаны силы. Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона). Выполнены математические преобразования для расчета
	ускорения Сделан расчет .В расчете допущен недочет или
	негрубая арифметическая ошибка. Или :не выполнена проверка
	размерности.
5	Сделан чертеж, указаны силы. Записаны необходимые и
	достаточные для решения задачи формулы (2 закон Ньютона. Вес
	тела, движущегося с ускорением). Выполнены необходимые
	математические преобразования. Сделан верный расчет.
	Выполнена проверка размерности.

2.3 Текущий контроль (ТК) № 3

Тема занятия: 2.4.4. Контрольная работа по разделу "Механика"

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа по теме

Дидактическая единица: 1.2 смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

Занятие(-я):

- 2.1.7. Контрольная работа по кинематике.
- 2.2.1. Фундаментальные взаимодействия в природе. Законы Ньютона. Инерциальная система отсчета. Инертность и масса тела. Сила, сложение сил.
- 2.2.3.Силы упругости. Закон Гука. Силы реакции опоры и натяжения подвеса. Вес тела. Невесомость и перегрузки.
- 2.2.5.Силы трения. Статическое и кинематическое трение. Коэффициент трения. Сила трения в технике и в быту.
- 2.2.6. Динамика прямолинейного движения при наличии и отсутствии трения. Динамика движения по окружности. Движение связанных тел.
- 2.3.1.Законы сохранения как фундаментальные законы природы. Импульс тела, импульс силы. Второй закон Ньютона в импульсной форме (закон изменения импульса). Закон сохранения импульса. Реактивное движение.
- 2.3.2.Механическая работа. Графическое представление работы. Работа силы тяжести, силы упругости, силы трения.
- 2.3.3. Механическая мощность. Мгновенная и средняя мощность. КПД. Решение задач на работу и мощность
- 2.3.4. Механическая энергия. Теорема о кинетической и потенциальной энергии. Консервативные силы. Закон сохранения энергии в механике.
- 2.3.6.Элементы статики. Момент силы. Правило моментов. Простые механизмы.

"Золотое правило" механики.

2.4.3. Механические волны в упругих средах. Классификация, характеристики волн. Звуковые волны. Акустический резонанс. Эхо. Ультразвук и инфразвук.

Задание №1

Шар массой 5 кг движущийся со скоростью 2 м/с налетает на покоящийся брусок массой 2 кг и далее движется вместе с ним. Какова скорость тел после столкновения?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (закон сохранения импульса в векторной или в скалярной форме) Не выполнены преобразования для расчета скорости тел или в них содержится ошибка. Или: В расчетах есть ошибка, приводящая к неправильному ответу. Нет проверки размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. (закон сохранения импульса в векторной и скалярной формах) Выполнены преобразования для расчета скорости тел. Сделан расчет. В расчете допущен недочет или арифметическая ошибка. Или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы(закон сохранения импульса в векторной и скалярной формах) Выполнены преобразования для расчета скорости тел Сделан верный расчет. Выполнена проверка размерности.

Дидактическая единица: 1.3 смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

Занятие(-я):

- 2.2.7. Контрольная работа по теме "Динамика"
- 2.4.1. Механические колебания. Основные характеристики, уравнение и графики гармонических колебаний. Превращение энергии при колебательном движении. Резонанс маятников. (теория)

Задание №1

По доскам в кузов грузовика равномерно втаскивают ящик массой 100 кг. Какую нужно при этом приложить силу, если высота кузова 1,5 м, а длина досок 4,5 м. Коэффициент трения 0,3. Сделать чертеж на котором указать все силы, действующие на ящик.

Оценка	Показатели оценки
--------	-------------------

3	Записаны не все необходимые и достаточные для решения задачи формулы (второй закон Ньютона в векторной форме и в проекциях, сила трения, синус угла наклона). Или: Не сделан чертеж, или в нем есть грубые ошибки. Или:Неверно определены проекции, или: не сделаны математические преобразования для определения силы, или в них содержится грубая ошибка приводящая к неверному ответу.
4	Записаны необходимые и достаточные для решения задачи формулы (второй закон Ньютона в векторной форме и в проекциях, сила трения, синус угла наклона). Сделан чертеж, но в нем есть недочеты. Сделаны математические преобразования для определения силы. Сделан расчет, но в расчете допущен недочет или арифметическая ошибка. Или: не выполнена проверка размерности
5	Записаны необходимые и достаточные для решения задачи формулы (второй закон Ньютона в векторной форме и в проекциях, сила трения, синус угла наклона). Сделан чертеж, верно определены проекции, сделаны математические преобразования для определения силы,. Сделан верный расчет. Выполнена проверка размерности.

Дидактическая единица: 2.5 приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров; **Занятие(-я):**

- 2.2.1. Фундаментальные взаимодействия в природе. Законы Ньютона. Инерциальная система отсчета. Инертность и масса тела. Сила, сложение сил.
- 2.2.3.Силы упругости. Закон Гука. Силы реакции опоры и натяжения подвеса. Вес тела. Невесомость и перегрузки.
- 2.2.5.Силы трения. Статическое и кинематическое трение. Коэффициент трения. Сила трения в технике и в быту.
- 2.3.2. Механическая работа. Графическое представление работы. Работа силы тяжести, силы упругости, силы трения.
- 2.3.3. Механическая мощность. Мгновенная и средняя мощность. КПД. Решение задач на работу и мощность
- 2.4.3. Механические волны в упругих средах. Классификация, характеристики волн. Звуковые волны. Акустический резонанс. Эхо. Ультразвук и инфразвук.

Задание №1

Сформулируйте законы Ньютона и приведите по одному примеру использования

Оценка	Показатели оценки
3	Приведены формулировки всех трех законов Ньютона, но в формулировках содержатся неточности. Или не приведены примеры, или примеры не соответствуют данным законам.
4	Приведены формулировки всех трех законов Ньютона. Приведены примеры на каждый закон. В ответе допущены один - два недочета
5	Приведены примеры, ответ полный и аргументированный, исчерпывающий.

Дидактическая единица: 2.10 использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи; оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и защиты окружающей среды.

Занятие(-я):

- 2.3.6.Элементы статики. Момент силы. Правило моментов. Простые механизмы. "Золотое правило" механики.
- 2.4.2.Изучение малых колебаний маятника.

Задание №1

Шар радиуса R и массой M подвешен на нити длиной l, закрепленной на вертикальной стенке. Найти силу, с которой шар действует на стенку.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы(правило моментов, условие равновесия). Не выполнены математические преобразования, или в них содержится ошибка. Не выполнен перевод единиц в СИ. Не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. Выполнены математические преобразованияВ расчете допущен недочет или негрубая арифметическая ошибка. Или: Не выполнена проверка размерности.

5	Записаны необходимые и достаточные для решения задачи
	формулы. Сделан верный расчет. Выполнена проверка
	размерности.

Залание №2

Рассчитать тормозной путь автомобиля движущегося со скоростью 72 км/ч, если коэффициент трения 0,7. Во сколько раз увеличится тормозной путь при скорости 90 км/ч на мокрой дороге при коэффициенте трения 0.5? Почему опасно перебегать улицу перед движущимся транспортом?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона, сила трения, работа силы трения. Или закон сохранения энергии). Не выполнены математические преобразования для расчета тормозного пути, или в них содержится ошибка. Не выполнен перевод единиц в СИ. Или : в расчетах содержится ошибка, приводящая к неверному результату. Или: задача решена не полностью (нет ответа на второй вопрос). Не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. (2 закон Ньютона, сила трения, работа силы трения. Или закон сохранения полной механической энергии). Выполнены математические преобразования для расчета тормозного путиСделан расчет .В расчете допущен недочет или негрубая арифметическая ошибка. Или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан верный расчет. Выполнена проверка размерности.

Дидактическая единица: 2.2 отличать гипотезы от научных теорий; **Занятие(-я):**

2.2.7. Контрольная работа по теме "Динамика"

Задание №1

Сопоставить понятия из первой и второй групп, подобрав по смыслу:

1) факт	1) на тела действует сила тяжести
2) гипотеза	2 каждое массивное тело порождает
	силовое поле притяжения к этому телу,
	называемое гравитационным полем.

3) теория	3) тела падают на Землю	
Оценка	Показатели оценки	
3	В сопоставлении допущены 2 ошибки	
4	В сопоставлении допущена одна ошибка	
5	Все понятия сопоставлены верно	

2.4 Текущий контроль (ТК) № 4

Тема занятия: 3.3.4. Контрольная работа по теме "МКТ И ТД"

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа по теме

Дидактическая единица: 2.9 измерять ряд физических величин, представляя результаты измерений с учетом их погрешностей;

Занятие(-я):

- 1.1.2.Погрешности прямых и косвенных измерений. Методы расчета погрешностей.
- 2.4.2.Изучение малых колебаний маятника.
- 3.1.4. Изучение изопроцессов
- 3.2.2. Модель строения жидкости. Поверхностное натяжение. Смачивание. Капиллярные явления.
- 3.2.4.. Измерение относительной влажности воздуха. (лабораторная работа)
- 3.2.5.Измерение коэффициента поверхностного натяжения жидкости.

Задание №1

Измерить температуру в классе, ответ записать с учетом погрешности измерительного прибора

Оценка	Показатели оценки
3	Выполнено измерение, приведено значение температуры воздуха без учета погрешности
4	Выполнено измерение, приведено значение температуры воздуха с учетом приборной погрешности.
5	Выполнено измерение, ответ записан с учетом приборной погрешности и погрешности измерения.

Дидактическая единица: 2.10 использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи; оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и защиты окружающей среды.

Занятие(-я):

- 3.1.4.Изучение изопроцессов
- 3.2.4.. Измерение относительной влажности воздуха. (лабораторная работа)
- 3.2.5.Измерение коэффициента поверхностного натяжения жидкости.
- 3.2.6.Решение задач по теме "МКТ" и "Агрегатные состояния вещества"

Объясните принцип работы и приведите примеры использования в быту барометраанероида.

Оценка	Показатели оценки
3	Приведен пример, ответ неполный или содержит ошибки.
4	Приведен пример, ответ неполный.
5	Приведен пример, ответ исчерпывающий.

Дидактическая единица: 2.4 приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные яв-ления;

Занятие(-я):

- 3.1.1.Основные положения МКТ, их опытное обоснование. Характеристики микрои макротел. Основное уравнение МКТ, его физический смысл.
- 3.3.2. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам.

Задание №1

Сформулируйте 1 закон термодинамики. Перечислите, какие экспериментальные данные положены в основу этого закона

Оценка	Показатели оценки
3	Сформулирован 1 законы термодинамики. Ответ неполный / неточный/ или не приведены примеры
4	Сформулирован1 закон ТД, приведены примеры, но ответ содержит неточности.
5	Сформулированы 1 закон термодинамики. Приведены примеры и пояснения, ответ исчерпывающий.

Задание №2

1)Запишите основное уравнение МКТ и сформулируйте его физический смысл.

- 2) Перечислите все физические величины, которые в него входят.
- 3) Что такое идеальный газ? При каких условиях газ можно считать идеальным?

Оценка	Показатели оценки
3	Дан ответ на два вопроса, или в ответе содержатся неточности
4	дан ответ на три вопроса, но в ответе содержатся недочеты.
5	Дан ответ на все три вопроса.

Дидактическая единица: 2.6 воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

Занятие(-я):

- 3.1.2. Температура и методы ее измерения. Уравнение состояния идеального газа.
- 3.2.1. Агрегатные состояния и фазовые переходы. Объяснение агрегатных состояний на основе МКТ. Взаимные превращения жидкостей и газов (парообразование и конденсация). Насыщенный пар и его свойства. Абсолютная и относительная влажность воздуха.
- 3.2.6.Решение задач по теме "МКТ" и "Агрегатные состояния вещества"

Задание №1

Прочитайте текст

Туман Изучая взвешенные в воздухе частицы, можно более детально понять, как образуются роса, иней, дождь и снег. Одним из таких явлений является туман. Он представляет собой не успевшее подняться вверх облако, когда в силу погодных условий верхние слои воздуха достаточно холодные. Сквозь них испарения пробиться не могут, а температуры над поверхностью еще не достаточно, чтобы образовались капли. Туман чаще образуется в утренние часы, температура над поверхностью в этот момент опускается. Воздух становится холодным, и пары не способны подняться высоко. Пруды, озера и реки продолжают остывать, отдавая тепло с молекулами воды в окружающее пространство. Когда воздух постепенно прогревается, частички пара либо устремляются вверх, либо оседают на траву. Так появляются капельки росы. Ведь чаще мы наблюдаем их на рассвете. Туман скапливается в холмистой местности, где есть овраги, ущелья, низменности. - Читайте подробнее на FB.ru:

http://fb.ru/article/280150/obyyasnenie-kak-obrazuyutsya-rosa-iney-dojd-i-sneg Ответьте на вопросы:

- 1) Верно ли описано образование тумана? Какие ошибки или неточности содержатся в тексте?
- 2) Что представляет собой туман на самом деле?
- 3) Каковы условия образования тумана?

Оценка	Показатели оценки
3	Верно отвечено на два вопрооса
4	Верно отвечено на три вопроса, но есть неточности
5	Все ответы верные полные

2.5 Текущий контроль (ТК) № 5

Тема занятия: 4.2.4. Решение задач по теме "Работа и мощность тока. Закон Джоуля-Ленца. КПД источника тока."

Метод и форма контроля: Самостоятельная работа (Опрос)

Вид контроля: Решение задач на законы постоянного тока

Дидактическая единица: 1.2 смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

Занятие(-я):

- 3.1.2. Температура и методы ее измерения. Уравнение состояния идеального газа.
- 3.2.1. Агрегатные состояния и фазовые переходы. Объяснение агрегатных состояний на основе МКТ. Взаимные превращения жидкостей и газов (парообразование и конденсация). Насыщенный пар и его свойства. Абсолютная и относительная влажность воздуха.
- 3.2.6.Решение задач по теме "МКТ" и "Агрегатные состояния вещества"
- 3.3.1.Внутренняя энергия, способы ее изменения. Внутренняя энергия идеального газа. . Работа при изменении объема газа. Расчет количества теплоты.
- 3.3.3.Второе начало ТД. Принцип действия тепловой машины. Цикл Карно. КПД цикла Карно
- 3.3.5.Обобщающее повторение МКТ и ТД
- 4.1.2. Методы расчета силы Кулона и напряженности электростатических полей.
- 4.1.3. Работа сил электрического поля при перемещении зарядов. Потенциал электрического поля и его свойства. Признаки потенциальности поля. Эквипотенциальные поверхности, связь между напряженностью и разностью потенциалов.
- 4.1.4.Электроемкость. Конденсаторы и их типы. Электроемкость плоского конденсатора. Соединение конденсаторов. Энергия электрического поля.
- 4.1.5.Решение задач "Электростатика"
- 4.2.2.Определение ЭДС и внутреннего сопротивления источника тока. Исследование последовательного и параллельного соединения резисторов
- 4.2.3. Изучение закона Ома для участка цепи. Измерение удельного сопротивления проводника

Задание №1

Цепь состоит из источника тока с ЭДС 4,5 В и внутренним сопротивлением 1,5 Ом и

проводников сопротивлением R1= 1,5 Ом и R2= 3 Ом. Каковы показания амперметра и вольтметра? Каковы будут показания этих же приборов, если параллельно проводнику R2 подключить R3 сопротивлением 3 Ом?

Оценка	Показатели оценки		
3	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи, формулы для расчета сопротивления участка). В расчетах есть ошибка		
4	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи, формулы для расчета сопротивления участка). Сделан расчет .В расчете допущен недочет или негрубая ошибка. или: Не выполнена проверка размерности.		
5	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи, формулы для расчета сопротивления участка). Сделан верный расчет. Выполнена проверка размерности.		

Задание №2

Какую площадь должны иметь пластины плоского конденсатора для того чтобы его электроемкость была равна 2 мк Φ , если между пластинами помещается слой слюды толщиной 0,2 мм? (ϵ =7).

Оценка	Показатели оценки	
3	Записаны необходимые и достаточные для решения задачи формулы (электроемкость плоского конденсатора). Выполнены необходимые математические преобразования. В расчетах есть ошибка (не переведены единицы измерения в СИ) или не более двух недочетов. Не выполнена проверка размерности.	
4	Записаны необходимые и достаточные для решения задачи формулы. (электроемкость плоского конденсатора). Выполнены необходимые математические преобразования.	

5	Записаны необходимые и достаточные для решения задачи	
	формулы (закон Ома для	
	полной цепи). Сделан верный расчет. Выполнена проверка	
	размерности.	

Ответить на вопросы:

- 1) Что такое ЭДС?
- 2) В каких единицах она измеряется?
- 3) Какими способами можно определить ЭДС источника?

Оценка	Показатели оценки	
3	Дан правильный ответ не менее чем на два вопроса.	
4	Дан правильный ответ на три вопроса, но ответ неполный.	
5	Дан полный правильный ответ на три вопроса.	

Дидактическая единица: 2.5 приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

Занятие(-я):

- 2.4.4. Контрольная работа по разделу "Механика"
- 3.1.2. Температура и методы ее измерения. Уравнение состояния идеального газа.
- 4.2.1.Постоянный электрический ток и его характеристики. ЭДС. Закон Ома для однородного и неоднородного участка цепи и его применение.

Задание №1

ЭДС источника тока 5 В. К источнику тока присоединили лампу сопротивлением 12 Ом. Найдите

напряжение на лампе, если внутреннее сопротивление источника 0,5 Ом.

Оценка	Показатели оценки	
3	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи). В расчетах есть ошибка или не более двух недочетов.	

4	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи). Сделан расчет .В расчете допущен недочет или арифметическая ошибка. Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи). Сделан верный расчет. Выполнена проверка размерности.

Определите полную мощность элемента при сопротивлении внешней цепи 4 Ом, если внутреннее

сопротивление элемента 2 Ом, а напряжение на его зажимах 6 В.

Оценка	Показатели оценки	
3	Записана формула мощности и закон Ома для полной цепи.	
4	Записана формула мощности и закон Ома для полной цепи. Задача решена в общем виде.	
5	Записана формула мощности и закон Ома для полной цепи. Задача решена в общем виде и в числовом. Записан верный ответ	

Дидактическая единица: 2.7 применять полученные знания для решения физических задач;

Занятие(-я):

- 2.2.7. Контрольная работа по теме "Динамика"
- 2.3.1.Законы сохранения как фундаментальные законы природы. Импульс тела, импульс силы. Второй закон Ньютона в импульсной форме (закон изменения импульса). Закон сохранения импульса. Реактивное движение.
- 2.3.2.Механическая работа. Графическое представление работы. Работа силы тяжести, силы упругости, силы трения.
- 2.3.3. Механическая мощность. Мгновенная и средняя мощность. КПД. Решение задач на работу и мощность
- 2.3.5.Решение задач на законы сохранения энергии и импульса.
- 2.3.6.Элементы статики. Момент силы. Правило моментов. Простые механизмы. "Золотое правило" механики.
- 2.4.1. Механические колебания. Основные характеристики, уравнение и графики

гармонических колебаний. Превращение энергии при колебательном движении. Резонанс маятников. (теория)

- 3.1.3. Экспериментальные газовые законы (Дальтона, Авогадро, Бойля-Мариотта, Гей-Люссака, Шарля). Изопроцессы.
- 4.1.2. Методы расчета силы Кулона и напряженности электростатических полей.
- 4.1.5.Решение задач "Электростатика"

Задание №1

При разомкнутом ключе амперметр показывает ток 1 А. Какой ток покажет амперметр при

замкнутом ключе? ЭДС источника 10 B, внутреннее сопротивление источника 10 M, R1 = 5 OM,

R2= 4 Ом, R3 неизвестно.

Оценка	Показатели оценки	
3	Рассмотрены два режима работы цепи- при замкнутом и при разомкнутом ключе.	
4	Записан закон Ома, найдено R3.	
5	Рассмотрены два режима работы цепи- при замкнутом и при разомкнутом ключе, найдено R3 и I2.	

Задание №2

Вольтметр рассчитан на измерение напряжений до максимального значения 30 В. При этом через

вольтметр идет ток 10 мА. Какое добавочное сопротивление нужно присоединить к вольтметру,

чтобы им можно было измерять напряжение до 150 В?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (расчет добавочного сопротивления). В расчетах есть ошибка или не более двух недочетов. Не выполнена проверка размерности

4	Записаны необходимые и достаточные для решения задачи формулы(расчет добавочного сопротивления) Сделан расчет .В расчете допущен недочет или арифметическая ошибка. Или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы (расчет добавочного сопротивления) Сделан верный расчет. Выполнена проверка размерности.

Дидактическая единица: 2.8 определять характер физического процесса по графику, таблице, формуле;

Занятие(-я):

- 2.1.7. Контрольная работа по кинематике.
- 2.2.4. Решение задач на законы Ньютона, закон Всемирного тяготения и закон Гука.
- 2.3.1.Законы сохранения как фундаментальные законы природы. Импульс тела, импульс силы. Второй закон Ньютона в импульсной форме (закон изменения импульса). Закон сохранения импульса. Реактивное движение.
- 2.3.5.Решение задач на законы сохранения энергии и импульса.
- 2.4.3. Механические волны в упругих средах. Классификация, характеристики волн. Звуковые волны. Акустический резонанс. Эхо. Ультразвук и инфразвук.
- 2.4.4. Контрольная работа по разделу "Механика"
- 3.1.3. Экспериментальные газовые законы (Дальтона, Авогадро, Бойля-Мариотта, Гей-Люссака, Шарля). Изопроцессы.
- 3.2.2. Модель строения жидкости. Поверхностное натяжение. Смачивание. Капиллярные явления.
- 3.3.1.Внутренняя энергия, способы ее изменения. Внутренняя энергия идеального газа. . Работа при изменении объема газа. Расчет количества теплоты.
- 3.3.3.Второе начало ТД. Принцип действия тепловой машины. Цикл Карно. КПД цикла Карно
- 3.3.5.Обобщающее повторение МКТ и ТД
- 4.1.2. Методы расчета силы Кулона и напряженности электростатических полей.
- 4.1.5.Решение задач "Электростатика"
- 4.2.1.Постоянный электрический ток и его характеристики. ЭДС. Закон Ома для однородного и неоднородного участка цепи и его применение.

Задание №1

Сопоставьте величины и формулы их расчета:

Работа тока	P=IU

Сила тока	E=Act/q
Напряжение	A=IUt
ЭДС	U=A/q
Мощность тока	I=q/t
Сопротивление	R=U/I

Оценка	Показатели оценки
3	Верных ответов не менее 3х
4	Верных ответов не менее 5
5	Все ответы верны

ЭДС источника тока 3 B, его внутреннее сопротивление 1 Ом, сопротивления резисторов R1=R2

= 1,75 Oм, R3 = 2 Ом, R4 = 6 Ом. Какова сила тока в резисторе R4?

Оценка	Показатели оценки
3	Найдено полное сопротивление цепи.
4	Найдено полное сопротивление цепи и сила тока в неразветвленной части цепи
5	Записаны формулы мощности для двух случаев. задача решена в общем виде, числовой ответ получен верно.

Дидактическая единица: 2.9 измерять ряд физических величин, представляя результаты измерений с учетом их погрешностей;

Занятие(-я):

- 3.3.4. Контрольная работа по теме "МКТ И ТД"
- 4.2.2.Определение ЭДС и внутреннего сопротивления источника тока.

Исследование последовательного и параллельного соединения резисторов

4.2.3.Изучение закона Ома для участка цепи. Измерение удельного сопротивления проводника

Задание №1

Вам даны: амперметр, вольтметр, резистор с неизвестным сопротивлением, источник тока, ключ, соединительные провода. Соберите цепь и определите сопротивление резистора с учетом погрешности приборов.

Оценка	Показатели оценки
3	Правильно собрана цепь, определено сопротивление резистора. Не сделан расчет погрешности.
4	Правильно собрана цепь, определено сопротивление резистора. Сделан расчет погрешности, но в расчетах есть один-два недочета.
5	Правильно собрана цепь, определено сопротивление резистора. Сделан расчет погрешности

2.6 Текущий контроль (ТК) № 6

Тема занятия: 4.5.2. Решение задач на закон ЭМИ, закон самоиндукции и энергию магнитного поля.

Метод и форма контроля: Самостоятельная работа (Информационноаналитический)

Вид контроля: Решение задач по теме

Дидактическая единица: 1.3 смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

Занятие(-я):

- 2.4.4. Контрольная работа по разделу "Механика"
- 3.3.4.Контрольная работа по теме "МКТ И ТД"
- 3.3.5.Обобщающее повторение МКТ и ТД
- 4.1.1.Электрический заряд и его свойства. Закон Кулона. Электростатическое поле. Напряженность поля. Принцип суперпозиции полей.
- 4.1.5.Решение задач "Электростатика"
- 4.2.1.Постоянный электрический ток и его характеристики. ЭДС. Закон Ома для однородного и неоднородного участка цепи и его применение.
- 4.3.7.Составление обобщающей таблицы "Электрический ток в разных средах"

Задание №1

В однородном МП индукцией 0,8 Тл на двух нитях подвешен проводник массой 200 г. На сколько

изменится сила натяжения нитей, если по проводнику пройдет ток силой 1 А. Длина проводника

40 см.

Оценка	Показатели оценки

3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. На чертеже или в расчетах есть ошибки приводящие к неверному ответу. Или: Не сделан чертеж, не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы (второй закон Ньютона, сила Ампера). Сделан чертеж Сделан расчет .В расчете допущен недочет или негрубая арифметическая ошибка или : Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы (второй закон Ньютона, сила Ампера). Сделан чертеж Сделан верный расчет. Выполнена проверка размерности

В однородное магнитное поле с индукцией 0,3 Тл перпендикулярно линиям индукции влетает электрон, прошедший ускоряющую разность потенциалов 320 В. Описать траекторию электрона.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. На чертеже или в расчетах есть ошибки приводящие к неверному ответу. Или: Не сделан чертеж, не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж и расчет .В расчете допущен недочет или негрубая арифметическая ошибка или : Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан верный расчет. Выполнена проверка размерности

Дидактическая единица: 2.7 применять полученные знания для решения физических задач;

Занятие(-я):

- 4.3.2.Электрический ток в растворах и расплавах электролитов. Закон электролиза.
- 4.4.1. Магнитное поле тока. Магнитная индукция. Линии магнитной индукции. Принцип суперпозиции магнитных полей.
- 4.4.2.Сила Ампера. Сила Лоренца. Их применение.
- 4.5.1.Самоиндукция. ЭДС самоиндукции. Индуктивность катушки. Энергия магнитного поля.

Задание №1

Прямолинейный проводник с силой тока 4,5 А помещен в однородное магнитное поле с индукцией 0,1 Тл перпендикулярно силовым линиям. Определить длину проводника, если при его перемещении на 20 см совершается работа 9мДж.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. На чертеже или в расчетах есть ошибки приводящие к неверному ответу. Или: Не сделан чертеж, не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан расчет. В расчете допущен недочет или негрубая арифметическая ошибка или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан верный расчет. Выполнена проверка размерности

Задание №2

Катушка из N=1000 витков провода находится в однородном магнитном поле, причем ось катушки составляет угол 60 градусов с вектором магнитной индукции. Радиус катушки 2 см. Магнитная индукция изменяется на 40 мТл за 2 с.Определить ЭДС индукции в катушке.

Показатели оценки	Оценка

3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. На чертеже или в расчетах есть ошибки приводящие к неверному ответу. Или: Не сделан чертеж, не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан расчет. В расчете допущен недочет или негрубая арифметическая ошибка или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан верный расчет. Выполнена проверка размерности

Дидактическая единица: 2.3 делать выводы на основе экспериментальных данных;

Занятие(-я):

- 2.4.2.Изучение малых колебаний маятника.
- 2.4.4. Контрольная работа по разделу "Механика"
- 3.1.1.Основные положения МКТ, их опытное обоснование. Характеристики микрои макротел. Основное уравнение МКТ, его физический смысл.
- 3.1.3. Экспериментальные газовые законы (Дальтона, Авогадро, Бойля-Мариотта, Гей-Люссака, Шарля). Изопроцессы.
- 3.1.4.Изучение изопроцессов
- 3.2.2. Модель строения жидкости. Поверхностное натяжение. Смачивание. Капиллярные явления.
- 3.2.3. Модель строения твердого тела. Кристаллы и аморфные тела, их физические свойства. Тепловое расширение твердых тел
- 3.2.4.. Измерение относительной влажности воздуха. (лабораторная работа)
- 3.2.5.Измерение коэффициента поверхностного натяжения жидкости.
- 3.3.1.Внутренняя энергия, способы ее изменения. Внутренняя энергия идеального газа. . Работа при изменении объема газа. Расчет количества теплоты.
- 3.3.3.Второе начало ТД. Принцип действия тепловой машины. Цикл Карно. КПД цикла Карно
- 3.3.4.Контрольная работа по теме "МКТ И ТД"
- 4.1.4.Электроемкость. Конденсаторы и их типы. Электроемкость плоского конденсатора. Соединение конденсаторов. Энергия электрического поля.
- 4.2.2.Определение ЭДС и внутреннего сопротивления источника тока.

Исследование последовательного и параллельного соединения резисторов

- 4.2.3. Изучение закона Ома для участка цепи. Измерение удельного сопротивления проводника
- 4.3.3.Определение электрохимического эквивалента меди
- 4.3.5. Электрический ток в газах.
- 4.3.6. Электрический ток в полупроводниках.
- 4.4.1. Магнитное поле тока. Магнитная индукция. Линии магнитной индукции. Принцип суперпозиции магнитных полей.
- 4.4.2.Сила Ампера. Сила Лоренца. Их применение.
- 4.4.3. Магнитное поле в веществе. Устройство и принцип действия электроизмерительных приборов
- 4.5.1.Самоиндукция. ЭДС самоиндукции. Индуктивность катушки. Энергия магнитного поля.

Задание №1

В катушке сопротивлением 5 Ом течет ток 17 А. Индуктивность катушки 50мГн. Каким будет напряжение на зажимах катушки, если ток в ней равномерно возрастает со скоростью 1000 A/c?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы. в расчетах есть ошибки приводящие к неверному ответу, не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы Сделан расчет. В расчете допущен недочет или негрубая арифметическая ошибка или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан верный расчет. Выполнена проверка размерности

2.7 Текущий контроль (ТК) № 7

Тема занятия: 5.2.1.Электромагнитные волны. Шкала ЭМВ. Принципы радиосвязи. Радиолокация

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Самостоятельная работа

Дидактическая единица: 1.1 смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная; **Занятие(-я):**

- 2.3.5. Решение задач на законы сохранения энергии и импульса.
- 3.1.1.Основные положения МКТ, их опытное обоснование. Характеристики микрои макротел. Основное уравнение МКТ, его физический смысл.
- 3.2.3. Модель строения твердого тела. Кристаллы и аморфные тела, их физические свойства. Тепловое расширение твердых тел
- 3.3.2. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам.
- 4.3.5. Электрический ток в газах.
- 5.1.5. Трансформатор. Производство и передача электроэнергии

Ответить на вопросы:

- 1) Сформулировать гипотезу Максвелла.
- 2) Что такое электромагнитное поле? каковы его свойства?

Оценка	Показатели оценки
	Ответ правильныйна оба вопроса но неполный или содержит ошибки
4	Ответ правильный, полный, но содержит один-два недочета
5	Ответ полный, правильный, аргументированный.

Задание №2

Ответить на вопросы:

- 1) Что называется электромагнитной волной?
- 2)Каковы свойства ЭМВ?
- 3) Что общего и в чем различия ЭМВ различных диапазонов?

Оценка	Показатели оценки
3	Дан ответ на два вопроса из трех, или ответ содержит ошибку
4	Дан ответ на все вопросы, но содержит один -два недочета
5	Дан полный правильный ответ на все вопросы

Дидактическая единица: 1.3 смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

Занятие(-я):

5.1.2. Переменный ток, способы его получения.. Мощность в цепи переменного тока. Метод векторных диаграмм.

Задание №1

Построить векторную диаграмму, рассчитать полное сопротивление, силу тока, коэффициент мощности, полное напряжение, напряжение на участках цепи для предложенного соединения R, C и L (последовательного или параллельного).

Оценка	Показатели оценки
3	Построена векторная диаграмма, не найдены 3-4 параметра, или недочеты на векторной диаграмме, в расчетах
4	Построена векторная диаграмма. Есть недочеты или не найден один- два параметра
5	Построена векторная диаграмма, найдены все параметры.

Дидактическая единица: 2.1 описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

Занятие(-я):

- 2.2.7. Контрольная работа по теме "Динамика"
- 2.3.4. Механическая энергия. Теорема о кинетической и потенциальной энергии. Консервативные силы. Закон сохранения энергии в механике.
- 2.4.1. Механические колебания. Основные характеристики, уравнение и графики гармонических колебаний. Превращение энергии при колебательном движении. Резонанс маятников. (теория)
- 3.2.1. Агрегатные состояния и фазовые переходы. Объяснение агрегатных состояний на основе МКТ. Взаимные превращения жидкостей и газов (парообразование и конденсация). Насыщенный пар и его свойства. Абсолютная и относительная влажность воздуха.
- 3.2.3. Модель строения твердого тела. Кристаллы и аморфные тела, их физические свойства. Тепловое расширение твердых тел
- 3.3.5.Обобщающее повторение МКТ и ТД
- 4.3.2. Электрический ток в растворах и расплавах электролитов. Закон электролиза.

Задание №1

Рассказать о принципах радиосвязи. Что такое модуляция и детектирование? Как они осуществляются на практике?

Оценка	Показатели оценки
3	Перечислены основные принципы радиосвязи без раскрытия их физической сущности.

4	Перечислены принципы радиосвязи, раскрыта физическая сущность процессов.
5	Перечислены принципы радиосвязи, изображены схемы приемника и передатчика, раскрыта физическая сущность процессов. Нарисована блок- схема передачи и приема радиосигнала.

Дидактическая единица: 2.5 приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров; **Занятие(-я):**

- 4.2.4. Решение задач по теме "Работа и мощность тока. Закон Джоуля-Ленца. КПД источника тока."
- 4.3.4.Электрический ток в вакууме. Двухэлектродная лампа . Электронно-лучевая трубка.
- 4.3.5. Электрический ток в газах.
- 4.3.7. Составление обобщающей таблицы "Электрический ток в разных средах"
- 4.4.3. Магнитное поле в веществе. Устройство и принцип действия электроизмерительных приборов

Задание №1

Приведите примеры использования электромагнитных волн в технике и быту.

Оценка	Показатели оценки
3	Приведены 2-3 примера, без объяснения физической сущности
4	Приведены 3-4 примера с пояснениями.
5	Приведены примеры (3-5), показана общность и оригинальность
	использования, раскрыта физическая сущность явлений.

Дидактическая единица: 2.6 воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

Занятие(-я):

- 3.3.4.Контрольная работа по теме "МКТ И ТД"
- 4.3.6.Электрический ток в полупроводниках.
- 4.3.7.Составление обобщающей таблицы "Электрический ток в разных средах"

Задание №1

Прочитать текст из научно-популярной статьи (сообщения СМИ, статьи интернета).

Ответить на вопросы к тексту

Пример:

Открытие рентгеновских лучей

Рентгеновские лучи были открыты в 1895 г. немецким физиком Вильгельмом Рентгеном. Рентген заметил, что при торможении быстрых электронов на любых препятствиях возникает сильно проникающее излучение, которое ученый назвал Хлучами (в дальнейшем за ними утвердится термин «рентгеновские лучи»). Когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки. Схема современной рентгеновской трубки для получения Х-лучей представлена на рисунке. Катод 1 представляет собой подогреваемую вольфрамовую спираль, испускающую электроны. Поток электронов фокусируется с помощью цилиндра 3, а затем соударяется с металлическим электродом (анодом) 2. При торможении электронов пучка возникают рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10-5 мм рт. ст.

Согласно проведенным исследованиям, рентгеновские лучи действовали на фотопластинку, вызывали ионизацию воздуха, не взаимодействовали с электрическими и магнитными полями. Сразу же возникло предположение, что рентгеновские лучи — это электромагнитные волны, которые в отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей имеют гораздо меньшую длину волны. Но если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию — явление, присущее всем видам волн. Дифракцию рентгеновских волн удалось наблюдать на кристаллах. Кристалл с его периодической структурой и есть то устройство, которое неизбежно должно вызвать заметную дифракцию рентгеновских волн, так как длина их близка к размерам атомов.

- 1.Согласно тексту, рентгеновские лучи образуются
- 1) при распространении электронов в вакууме
- 2) при распространении электронов в газах
- 3) при резком торможении быстрых электронов на препятствии
- 4) при взаимодействии электронов с молекулами газа
- 2. Что является доказательством волновой природы рентгеновских лучей?
- 1) высокая проникающая способность рентгеновских лучей
- 2) взаимодействие с электрическим полем
- 3) взаимодействие с магнитным полем
- 4) дифракция на кристаллах
- 3. Какова природа рентгеновских лучей? рентгеновские лучи это электромагнитные волны, которые в отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей имеют гораздо меньшую длину волны

4. Какие волновые явления присущи рентгеновскому излучению?рентгеновское излучение представляет собой электромагнитные волны, онообнаруживает дифракцию, интерференцию, поляризацию- то есть — явления, присущие всем видам волн.

Оценка	Показатели оценки
3	Текст понят верно, в ответах на вопросы содержатся ошибки.
4	Текст понят верно, в ответах содержатся один-два недочета.
5	Приведены примеры полные и исчерпывающие.

2.8 Текущий контроль (ТК) № 8

Тема занятия: 6.2.5. Контрольная работа по теме "Оптика" **Метод и форма контроля:** Контрольная работа (Опрос) **Вид контроля:** Письменная контрольная работа по теме

Дидактическая единица: 1.1 смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная; **Занятие(-я):**

Задание №1

В некоторую точку пространства приходят когерентные волны с оптической разностью хода 6 мкм. Определить - произойдет усиление или ослабление света в данной точке, если длина волны равна 480 нм.

Оценка	Показатели оценки
3	Записано условие максимума. Ответ не получен или он неверный.
4	Приведен правильный и полный ответ с небольшим недочетом.
5	Приведен правильный и полный ответ.

Залание №2

Какова оптическая разность хода двух когерентных монохроматических волн в веществе, абсолютный показатель преломления которого 1,6 если геометрическая разность хода 2,5 см? Будет ли наблюдаться ослабление или усиление волн, если их длина 400 нм?

Оценка	Показатели оценки

3	Правильно найден один из параметров. Либо- записаны формулы (оптическая разность хода и условие максимума) но ответ не найден.Либо- ошибки в переводе единиц.
4	Правильно записаны формулы, найдены оба параметра, но есть незначительная математическая ошибка.
5	Приведен правильный и полный ответ.

Дидактическая единица: 1.2 смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

Занятие(-я):

- 4.2.4. Решение задач по теме "Работа и мощность тока. Закон Джоуля-Ленца. КПД источника тока."
- 4.3.1.Электрический ток в металлах. Зависимость сопротивления от температуры. Сверхпроводимость.
- 4.3.2.Электрический ток в растворах и расплавах электролитов. Закон электролиза.
- 4.3.3.Определение электрохимического эквивалента меди
- 4.5.1.Самоиндукция. ЭДС самоиндукции. Индуктивность катушки. Энергия магнитного поля.
- 4.5.2. Решение задач на закон ЭМИ, закон самоиндукции и энергию магнитного поля.
- 5.1.5. Трансформатор. Производство и передача электроэнергии
- 6.2.4.Специальная теория относительности. Постулаты. Следствия. Релятивистская динамика. Связь между массой и энергией

Задание №1

Каким будет казаться цвет зеленых листьев, если смотреть на них через красное стекло?

Примерный ответ:

Зеленые листья будут казаться черными, т.к. красный светофильтр пропускает только красные лучи. зеленая составляющая будет гаситься.

Оценка	Показатели оценки
3	Дан правильный ответ без объяснения физической сущности.
4	Дан правильный, но не полный ответ
5	Дан правильный и полный ответ

Дидактическая единица: 2.7 применять полученные знания для решения физических задач;

Занятие(-я):

- 4.5.2. Решение задач на закон ЭМИ, закон самоиндукции и энергию магнитного поля.
- 5.1.3. Сопротивление, емкость и индуктивность в цепи переменного тока.
- 5.1.4.Полное сопротивление последовательной цепи переменного тока. Закон Ома для цепи переменного тока, содержащей R,L,C.
- 6.1.2. Линзы . Построение изображений. Формула тонкой линзы.

Задание №1

На дифракционную решетку с периодом $d=0{,}005$ мм нормально к ее поверхности падает параллельный пучок монохроматического света с длиной волны $\lambda=500$ нм. За решеткой, параллельно ее плоскости, расположена тонкая собирающая линза с фокусным расстоянием F=6 см. Чему равно расстояние между максимумами первого и второго порядков на экране, расположенном в фокальной плоскости линзы?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (формула решетки, расстояние между максимумами) и выполнены необходимые математические преобразования. Сделан чертеж. В чертеже расчетах есть ошибки, приводящие к неверномуо твету.
4	Записаны необходимые и достаточные для решения задачи формулы(формула решетки, расстояние между максимумами) и выполнены необходимые математические преобразования. Сделан чертеж. В расчете или чертеже допущены недочеты, не приводящие к ошибочному ответу
5	Записаны необходимые и достаточные для решения задачи формулы(формула решетки, расстояние между максимумами) и выполнены необходимые математические преобразованияВыполнен чертеж. Сделан верный расчет. Выполнена проверка размерности.

Задание №2

Вдоль главной оптической оси собирающей линзы с фокусным расстоянием F=12 см расположен предмет BA. Конец которого находится на расстоянии d1=17.9 см от линзы, а начало - на расстоянии d2=18.1 см. Найдите линейное увеличение Γ изображения B1A1 предмета.

Оценка	Показатели оценки

3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. В расчетах есть ошибка или не более двух недочетов.
4	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертежВ расчете или чертеже допущен недочет или арифметическая ошибка.
5	Записаны необходимые и достаточные для решения задачи формулы.Выполнен чертеж. Сделан верный расчет. Выполнена проверка размерности.

Дидактическая единица: 2.8 определять характер физического процесса по графику, таблице, формуле;

Занятие(-я):

- 4.2.4. Решение задач по теме "Работа и мощность тока. Закон Джоуля-Ленца. КПД источника тока."
- 4.5.2.Решение задач на закон ЭМИ, закон самоиндукции и энергию магнитного поля.
- 5.1.1.Свободные электромагнитные колебания. Контур Томсона.

Задание №1

На дифракционную решетку нормально к ее поверхности падает параллельный пучок лучей с длиной волны $\lambda=0,5$ мкм. Постоянная решетки d= 5,0 мкм. Определите число штрихов N на 1,0 см и максимальный порядок спектра кт.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы(формула решетки, число штрихов, макс порядок спектра) и выполнены необходимые математические преобразования Сделан чертеж. В расчетах есть ошибка или не более двух недочетов.
4	Записаны необходимые и достаточные для решения задачи формулы(формула решетки, число штрихов, макс.порядок спектра) и выполнены необходимые математические преобразования Сделан чертежВ расчете или чертеже допущен недочет или арифметическая ошибка.
5	Записаны необходимые и достаточные для решения задачи формулы (формула решетки, число штрихов, макс порядок спектра) и выполнены необходимые математические преобразованияВыполнен чертеж. Сделан верный расчет. Выполнена проверка размерности.

С помощью тонкой собирающей линзы получается действительное увеличенное изображение плоского предмета. Если предмет находится на расстоянии d = 6 см от линзы, то изображение получается увеличенным в 2 раза. На сколько надо сместить предмет, чтобы получить изображение, увеличенное в 10 раз?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (формула линзы, увеличение линзы). Сделан чертеж. В расчетах есть ошибка или не более двух недочетов.
4	Записаны необходимые и достаточные для решения задачи формулы (формула линзы, увеличение линзы). Сделан чертежВ расчете или чертеже допущен недочет или арифметическая ошибка.
5	Записаны необходимые и достаточные для решения задачи формулы (формула линзы, увеличение линзы).Выполнен чертеж. Сделан верный расчет. Выполнена проверка размерности.

Дидактическая единица: 2.1 описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

Занятие(-я):

6.2.4.Специальная теория относительности. Постулаты. Следствия. Релятивистская динамика. Связь между массой и энергией

Задание №1

На сколько увеличится масса тела, если дополнительно сообщит ему 9 ТДж энергии?

Оценка	Показатели оценки
3	Записана формула связи массы и энергии.
4	Записана формула связи массы и энергии, сделан расчет массы. Ошибка в переводе единиц.
5	Задача решена полно и правильно. Получен ответ в кг (или в г) Сделана проверка размерности

2.9 Текущий контроль (ТК) № 9

Тема занятия: 7.1.5. Контрольная работа по теме "Квантовая физика и физика

атома и атомного ядра"

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа по теме

Дидактическая единица: 1.4 вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики

Занятие(-я):

- 4.3.4.Электрический ток в вакууме. Двухэлектродная лампа . Электронно-лучевая трубка.
- 5.1.1.Свободные электромагнитные колебания. Контур Томсона.
- 5.1.4.Полное сопротивление последовательной цепи переменного тока. Закон Ома для цепи переменного тока, содержащей R,L,C.
- 5.2.1.Электромагнитные волны. Шкала ЭМВ. Принципы радиосвязи. Радиолокация 6.2.5.Контрольная работа по теме "Оптика"

Задание №1

Расскажите коротко об открытии Герцем электромагнитных волн.

Оценка	Показатели оценки
3	Правильно передана суть открытия.
4	Рассказ содержит упоминание об открытом колебательном контуре.
5	Рассказ содержит физическое обоснование излучения ЭМВ Пример ответа: Электромагнитные колебания и волны Герц получал за счет возбуждения серии импульсов быстропеременного потока в вибраторе при помощи источника повышенного напряжения. Высокочастотные токи можно обнаружить при помощи контура. Частота колебаний при этом будет тем выше, чем выше его емкость и индуктивность. Но при этом большая частота не является гарантией интенсивного потока. Для проведения своих опытов Герц применил достаточно простое устройство, которое сегодня так и называют — "вибратор Герца"- колебательный контур открытого типа.

Дидактическая единица: 2.6 воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

Занятие(-я):

7.1.2. Строение ядра. Энергия связи ядра. Ядерные силы. Радиоактивные превращения. Правила смещения. Деление ядер. Закон радиоактивного распада. Задание №1

Прочитать текст из научно-популярной статьи (сообщения СМИ, статьи интернета). Ответить на вопросы к тексту

Открытие рентгеновских лучей

Рентгеновские лучи были открыты в 1895 г. немецким физиком Вильгельмом Рентгеном. Рентген заметил, что при торможении быстрых электронов на любых препятствиях возникает сильно проникающее излучение, которое ученый назвал Хлучами (в дальнейшем за ними утвердится термин «рентгеновские лучи»). Когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки.

Схема современной рентгеновской трубки для получения Х-лучей представлена на рисунке. Катод 1 представляет собой подогреваемую вольфрамовую спираль, испускающую электроны. Поток электронов фокусируется с помощью цилиндра 3, а затем соударяется с металлическим электродом (анодом) 2. При торможении электронов пучка возникают рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10-5 мм рт. ст.

Согласно проведенным исследованиям, рентгеновские лучи действовали на фотопластинку, вызывали ионизацию воздуха, не взаимодействовали с электрическими и магнитными полями. Сразу же возникло предположение, что рентгеновские лучи — это электромагнитные волны, которые в отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей имеют гораздо меньшую длину волны. Но если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию — явление, присущее всем видам волн. Дифракцию рентгеновских волн удалось наблюдать на кристаллах. Кристалл с его периодической структурой и есть то устройство, которое неизбежно должно вызвать заметную дифракцию рентгеновских волн, так как длина их близка к размерам атомов.

- 1.Согласно тексту, рентгеновские лучи образуются (выберите верный ответ)
- 1) при распространении электронов в вакууме
- 2) при распространении электронов в газах
- 3) при резком торможении быстрых электронов на препятствии
- 4) при взаимодействии электронов с молекулами газа
- 2. Что является доказательством волновой природы рентгеновских лучей?
- 1) высокая проникающая способность рентгеновских лучей
- 2) взаимодействие с электрическим полем
- 3) взаимодействие с магнитным полем
- 4) дифракция на кристаллах
- 3. Какова природа рентгеновских лучей?
- 4. Какие волновые явления присущи рентгеновскому излучению?

Оценка	Показатели оценки
3	Текст понят верно, в ответах на вопросы содержатся ошибки.
4	Текст понят верно, в ответах содержатся один-два недочета.
5	Текст понят и проанализирован. Ответы на вопросы полные и исчерпывающие.

Дидактическая единица: 2.10 использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи; оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и защиты окружающей среды.

Занятие(-я):

- 4.1.4.Электроемкость. Конденсаторы и их типы. Электроемкость плоского конденсатора. Соединение конденсаторов. Энергия электрического поля.
- 4.3.6.Электрический ток в полупроводниках.
- 4.4.3. Магнитное поле в веществе. Устройство и принцип действия электроизмерительных приборов
- 6.1.2. Линзы . Построение изображений. Формула тонкой линзы.
- 6.1.3.Определение фокусного расстояния линзы
- 6.2.2.Интерференция света. Применение интерференции
- 6.2.3. Дифракция света. Дифракционная решетка. Измерение длины световой волны
- 7.1.4. Ядерные реакции. Ядерный реактор. Атомные электростанции. Термоядерная реакция

Задание №1

Перечислить факторы воздействия радиации на организм человека и методы защиты от радиации

Оценка	Показатели оценки
3	В приведенных факторах и методах содержатся недочеты или ответы неполные (не менее 2/3 правильных ответов).
4	В примерах содержатся один-два недочета.

5 Приведены примеры полные и исчерпывающие.

1. Преграды – чем больше препятствий между человеком и источником радиоактивного излучения, тем лучше

Методы защиты:

Физические:

Защита временем

Защита расстоянием

Защита экранированием

Деактивация продуктов, объектов

Защита органов дыхания и кожи

Вентиляция помещений чистым (незараженным) водухом

Химические

Использование радиопротекторов

Использование медпрепаратов

Санитарно-гигиенические мероприятия

Использование защитных материалов

Биологические:

использование продуктов, связывающих радионуклиды использование витаминов

ускорение процессов выведения радионуклидов из организма факторы воздействия радиации

- 1. Время чем меньше продолжительность воздействия, тем лучше;
- 2. Расстояние чем дальше от источника радиации, тем лучше;

Что такое изотопы? Как их получают? Привести примеры использования радиоактивных изотопов.

Примеры:Превращение атомных ядер веществ в другие ядра. Применение радиоактивных изотопов и меченых соединений для исследования органов и систем человека с целью распознавания и лечения болезней. Радиоактивный метод анализа вещества. Радиоизотопные источники энергии.

Оценка	Показатели оценки	
3	В ответе содержатся недочеты или ответ неполный.	
4	В ответе содержатся один-два недочета.	
5	Приведены примеры полные и исчерпывающие.	

Дидактическая единица: 2.2 отличать гипотезы от научных теорий; **Занятие(-я):**

- 2.4.4. Контрольная работа по разделу "Механика"
- 4.1.1.Электрический заряд и его свойства. Закон Кулона. Электростатическое поле. Напряженность поля. Принцип суперпозиции полей.
- 4.3.1.Электрический ток в металлах. Зависимость сопротивления от температуры. Сверхпроводимость.
- 5.1.2. Переменный ток, способы его получения. Мощность в цепи переменного тока. Метод векторных диаграмм.
- 5.1.3. Сопротивление, емкость и индуктивность в цепи переменного тока.
- 5.2.1.Электромагнитные волны. Шкала ЭМВ. Принципы радиосвязи. Радиолокация
- 6.2.4.Специальная теория относительности. Постулаты. Следствия. Релятивистская динамика. Связь между массой и энергией
- 7.1.1.Строение атома. Планетарная модель атома, ее противоречия. Квантовые постулаты Бора. Излучение и поглощение света атомом. Спектры и спектральный анализ.

Задание №1

- 1. Сколько нуклонов, протонов и нейтронов содержится в ядре урана 92 U235?
- 2. При бомбардировке алюминия 13Al27 α-частицами образуется изотоп фосфора 15P30. Какая частица испускается при этом ядерном превращении? Запишите ядерную реакцию.
- 3. Период полураспада радиоактивного йода-131 равен 8 суток. Рассчитайте, за какое время количество атомов йода-131 уменьшится в 1000 раз.
- 4. Определите дефект массы, энергию связи и удельную энергию ядра атома азота 7N14.
- 5. В какой элемент превращается изотоп тория 90Th232 после α-распада, двух β-распадов и еще одного α-распада?

Оценка	Показатели оценки	
3	Правильно решены 3 из 5 задач	
4	Правильно решены 4 из 5 задач	
5	Правильно решены 5 из 5 задач	

Дидактическая единица: 2.4 приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные яв-ления;

Занятие(-я):

- 3.3.4. Контрольная работа по теме "МКТ И ТД"
- 3.3.5.Обобщающее повторение МКТ и ТД
- 4.1.1.Электрический заряд и его свойства. Закон Кулона. Электростатическое поле. Напряженность поля. Принцип суперпозиции полей.
- 4.2.2.Определение ЭДС и внутреннего сопротивления источника тока. Исследование последовательного и параллельного соединения резисторов
- 4.3.4.Электрический ток в вакууме. Двухэлектродная лампа . Электронно-лучевая трубка.
- 4.4.2.Сила Ампера. Сила Лоренца. Их применение.
- 5.2.1.Электромагнитные волны. Шкала ЭМВ. Принципы радиосвязи. Радиолокация
- 6.2.4.Специальная теория относительности. Постулаты. Следствия. Релятивистская динамика. Связь между массой и энергией
- 6.3.1.Тепловое излучение. Гипотеза Планка. Корпускулярно-волновой дуализм. Световое давление. Химическое действие света.
- 6.3.2. Фотоэффект. Законы фотоэффекта. Уравнение Эйнштейна.
- 6.3.3.Решение задач по теме "Квантовая физика"
- 7.1.1.Строение атома. Планетарная модель атома, ее противоречия. Квантовые постулаты Бора. Излучение и поглощение света атомом. Спектры и спектральный анализ.
- 7.1.2.Строение ядра. Энергия связи ядра. Ядерные силы. Радиоактивные превращения. Правила смещения. Деление ядер. Закон радиоактивного распада.
- 7.1.3. Методы наблюдения и регистрации ионизирующих излучений. Биологическое действие ионизирующих излучений.

Задание №1

Приведите примеры открытий, служащих доказательством сложной структуры атома.

Открытие электрона, радиоактивности. Периодический закон Менделеева, фотоэффект, опыты Резерфорда (о каждом нужно немного рассказать)

Оценка	Показатели оценки	
	Ответ неполный (приведены примеры, но нет описания открытий)	
4	Ответ верен, но в описании открытий содержатся неточности)	
5	Ответ верный, полный, развернутый, аргументированный.	

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

№ семестра	Вид промежуточной аттестации
1	

может быть выставлен автоматически по результатам текущих контролей

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: по выбору выполнить два теоретических и два практических задания

Дидактическая единица для контроля:

1.1 смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;

Задание №1 (из текущего контроля)

Что называется инерциальной системой отсчета? Каковы границы применимости этой модели? Приведите примеры тел, которые можно считать ИСО в данных условиях.

Оценка	Показатели оценки	
3	Ответ в целом правильный, но неточный (не соответствует приведенному определению), или не приведены границы применимости модели, или не приведен пример.	
4	Ответ в целом правильный но содержит неточности, не приводящие к искажению сути, приведены примеры, не не даны пояснения.	
5	Ответ правильный, содержит определение и границы применимости модели ИСО. Приведены примеры и пояснения к ним.	

Дидактическая единица для контроля:

1.2 смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

Задание №1 (из текущего контроля)

Шар массой 5 кг движущийся со скоростью 2 м/с налетает на покоящийся брусок массой 2 кг и далее движется вместе с ним. Какова скорость тел после

столкновения?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (закон сохранения импульса в векторной или в скалярной форме) Не выполнены преобразования для расчета скорости тел или в них содержится ошибка. Или: В расчетах есть ошибка, приводящая к неправильному ответу. Нет проверки размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. (закон сохранения импульса в векторной и скалярной формах) Выполнены преобразования для расчета скорости тел. Сделан расчет. В расчете допущен недочет или арифметическая ошибка. Или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы(закон сохранения импульса в векторной и скалярной формах) Выполнены преобразования для расчета скорости тел Сделан верный расчет. Выполнена проверка размерности.

Задание №2

Ответить на один из теоретических вопросов:

- 1. Что называется механическим движением?
- 2. Что такое материальная точка и для чего введено это понятие?
- 3. Что такое система отсчета? Для чего она вводится?
- 4. Что называют траекторией движения? Что называют длиной пути и перемещением? В чем отличие пути от перемещения?
- 5. Какое движение называют равномерным прямолинейным? Что называют скоростью равномерного прямолинейного движения?
- 6. Как определить координату тела, зная проекцию перемещения?
- 7. Какое движение называют неравномерным, или переменным? Что называют средней скоростью переменного движения?
- 8. Что называют мгновенной скоростью неравномерного движения? Каким способом можно определить мгновенную скорость тела?
- 9. Что называют ускорением?
- 10. Напишите формулу координаты тела при равноускоренном прямолинейном движении.
- 11. Как по графику скорости равноускоренного движения можно определить ускорение и путь, пройденный телом в этом движении?

- 12. Что называют свободным падением тела? При каких условиях падение тел можно считать свободным? Каким видом движения является падение тел?
- 13. Что такое ускорение свободного падения? Запишите формулу. Зависит ли ускорение свободного падения тел от массы?
- 14. Напишите формулы, описывающие свободное падение тел:
 - Скорость тела в любой момент времени;
 - Путь, пройденный телом за определенное время;
 - Значение скорости тела после прохождения определенного пути;
 - Продолжительность свободного падения с определенной высоты.
 - 1. С каким ускорением движется тело, брошенное вертикально вверх? Чему равно и как направлено это ускорение?
 - 2. Напишите формулы, описывающие движение тела, брошенного вертикально вверх:
 - Скорость тела в любой момент времени;
 - Максимальная высота подъема тела;
 - Высота, на которую поднимается тело за определенное время;
 - Время полета.

Оценка	Показатели оценки	
3	Ответ правильный но неточный или неполный, или содержит незначительные ошибки	
4	Ответ правильный, но неполный	
5	Ответ полный, правильный, исчерпывающий.	

Дидактическая единица для контроля:

1.3 смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

Задание №1

Определить ускорение свободного падения на высоте 20 км над поверхностью Земли, радиус Земли 6400 км, ускорение на поверхности земли 9, 81 м/с2 (не окуруглять!)

Оценка	Показатели оценки
	записан закон всемирного тяготения, ответ не найден или содержит ошибки

	Записан закон всемирного тяготения, сделан расчет. Нет проверки размерности или ответ содержит незначительные ошибки
5	Решение верное, полное, сделана проверка размерности

Ответить на один из теоретических вопросов:

1. Что называется инерцией, инертностью, инерциальной системой отсчета, замкнутой системой тел, консервативными силами, потенциальной энергией, кинетической энергией, полной механической энергией, абсолютно упругим и неупругим ударом, реактивным движением?

- 1. Что называется силой, массой, импульсом тела, импульсом силы, механической работой, мощностью, энергией, КПД механизма. Каковы единицы измерения этих величин?
- 2. Сформулировать три закона Ньютона, закон всемирного тяготения, закон сохранения импульса, закон сохранения механической энергии тела. Написать математический вид этих законов, какие величины входят в эти формулы?
- 3. Чем отличается реактивное движение тела от других видов движения? На каком законе оно основано? От чего зависит скорость оболочки ракеты?
- 4. Формула, связывающая массы и ускорения взаимодействующих тел.
- 5. Напишите формулы для расчета силы, массы, скорости ИСЗ на любой высоте и для расчета первой космической скорости, импульса тела, импульса силы, механической работы (через силу), мощности, полной механической энергии, потенциальной энергии поднятого над Землей тела и упруго деформированного тела, кинетической энергии, коэффициента полезного действия механизмов. Какие величины входят в эти формулы?
- 6. В каких случаях сила совершает работу, в каких нет? В каком случае сила совершает положительную работу, в каком отрицательную?
- 7. Напишите формулу для изменения полной механической энергии тела при действии на тело неконсервативных сил, какие величины входят в эту формулу?
- 10. Напишите формулы для расчета работы силы тяжести и силы упругости, что общего у этих величин? Какие величины входят в эти формулы?
- 11. Формула теоремы о кинетической энергии, какие величины входят в эту формулу?
- 12. Как изменится кинетическая энергия тела, если сила, приложенная к телу,

совершает положительную работу, отрицательную работу?

- 13. Почему КПД механизмов всегда меньше 100%?
- 14. Как изменится потенциальная энергия тела, если сила, приложенная к телу, совершает положительную работу, отрицательную работу?

Оценка	Показатели оценки	
3	Ответ правильный но неточный или неполный, или содержит незначительные ошибки	
4	Ответ правильный, но неполный	
5	Ответ полный, правильный, исчерпывающий.	

Дидактическая единица для контроля:

2.1 описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

Дидактическая единица для контроля:

2.2 отличать гипотезы от научных теорий;

Дидактическая единица для контроля:

2.3 делать выводы на основе экспериментальных данных;

Дидактическая единица для контроля:

2.4 приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные яв-ления;

Дидактическая единица для контроля:

2.5 приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

Дидактическая единица для контроля:

2.6 воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Ин-тернете, научно-популярных статьях;

Дидактическая единица для контроля:

2.7 применять полученные знания для решения физических задач;

Дидактическая единица для контроля:

2.8 определять характер физического процесса по графику, таблице, формуле;

Дидактическая единица для контроля:

2.9 измерять ряд физических величин, представляя результаты измерений с учетом

их погрешностей;

Дидактическая единица для контроля:

2.10 использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи; оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и защиты окружающей среды.

№ семестра	Вид промежуточной аттестации
2	Экзамен

Экзамен может быть выставлен автоматически по результатам текущих контролей
Konipolen
екущий контроль №1
екущий контроль №2
екущий контроль №3
екущий контроль №4
екущий контроль №5
екущий контроль №6
екущий контроль №7
екущий контроль №8
екущий контроль №9

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Выполнить одно теоретическое задание и два практических задания.

Дидактическая единица для контроля:

1.1 смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;

Задание №1 (из текущего контроля)

В некоторую точку пространства приходят когерентные волны с оптической разностью хода 6 мкм. Определить - произойдет усиление или ослабление света в данной точке, если длина волны равна 480 нм.

Оценка	Показатели оценки
	Записано условие максимума. Ответ не получен или он неверный.

4	Приведен правильный и полный ответ с небольшим недочетом.
5	Приведен правильный и полный ответ.

Ответить на вопросы:

- 1)Сформулировать гипотезу Максвелла.
- 2) Дать определение электромагнитного поля.
- 3) Что такое электромагнитная волна? Каковы свойства ЭМВ?

Оценка	Показатели оценки
3	Сформулирована гипотеза. Дано определение ЭМП или ЭМВ.

Дан полный и содержательный ответ на все вопросы, перечислены свойства и диапазоны ЭМВ. Примерный ответ: Электромагнитное поле - это совокупность электрического и магнитного полей, поэтому в каждой точке своего пространства оно описывается двумя основными величинами: напряженностью электрического поля E и индукцией магнитного поля **B**. Так как электромагнитное поле представляет собой процесс превращения электрического поля в магнитное, а затем магнитного в электрическое, то его состояние постоянно меняется. Распространяясь в пространстве и времени, оно образует электромагнитные волны. Источником ЭМВ служат заряды. движущиеся с ускорением. В зависимости от частоты и длины эти волны разделяют на радиоволны, терагерцовое излучение, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское и гамма-излучение. Свойства ЭМВ: распространяются с постоянной скоростью с=300000 км/с(в вакууме). Обладают нергией и импульсом. Проявляют свойства отражения и преломления, дисперсии, интерференции и дифракции. Электромагнитная волна-поперечная. Векторы напряженности и индукции электромагнитного поля взаимно перпендикулярны, а плоскость в которой они лежат, перпендикулярна направлению распространения волны.

Задание №3

Ответить на вопросы:

- 1. Что такое фотон? Чему равны энергия и импульс фотона? Каковы свойства фотона?
- 2. Сформулируйте квантовую гипотезу Планка.
- 3. Раскройте физическую сущность корпускулярно-волнового дуализма света

Оценка	Показатели оценки
3	Сформулирована гипотеза Планка.

	п п
4	Сформулирована гипотеза Планка и указаны открытия, являющиеся ее подтверждением.
5	Сформулирована гипотеза Планка и указаны открытия,
	являющиеся ее подтверждением.
	Перечислены свойства фотона.
	Примерный ответ:
	Гипотеза Планка — является предположением того, что <u>атомы</u>
	испускают электромагнитную энергию
	(свет) отдельными порциями — квантами, а не непрерывно.
	Энергия каждой порции является пропорциональной частоте
	излучения: $E=hv$, где $h=6.63 \cdot 10$ -34 Дж \cdot с —
	является постоянной Планка, v — является частотой света.
	Квантовая теория начала развиваться после открытия
	Планка. Гипотеза Планка нашла экспериментальной
	подтверждение в открытии фотоэффекта,
	фотохимических реакций, давлении света, явлении
	люминесценции.
	Основные свойства фотона
	Энергия фотона:
	$E = h \nu$ или $E = \hbar \omega$
	Согласно теории
	относительности энергия всегда
	может быть вычислена как
	$E = mc^2$
	Отсюда - <i>масса фотона</i> .
	hνĺ
	$m = \frac{1}{c^2}$
	Импульс фотона
	$p = mc = \frac{h\nu}{m} = \frac{h}{m}$
	с λ Импульс
	фотона направлен по световому
	пучку.
	Наличие импульса
	подтверждается
	экспериментально:
	существованием светового
	давления.

Ответить на вопросы:

- 1) Сформулируйте квантовые постулаты Бора.
- 2)Поясните, как происходит излучение и поглощение света атомом?
- 3)Перечислите недостатки теории Бора.

Оценка	Показатели оценки
3	Сформулированы постулаты Бора.
4	Сформулированы постулаты Бора. Дано объяснение излучения и поглощения света атомом.
5	Сформулированы постулаты Бора. Дано объяснение излучения и поглощения света атомом. Перечислены недостатки теории Бора.

Задание №5

Ответить на вопросы:

- 1) Перечислите явления, подтверждающие сложную структуру атома.
- 2) Расскажите об опытах Резерфорда.
- 3) Объясните планетарную модель атома, перечислите ее противоречия.

Оценка	Показатели оценки
3	Перечислены явления, подтверждающие сложную структуру
	атома.
4	Перечислены явления, подтверждающие сложную структуру атома. Рассказано о сути опытов Резерфорда.
5	Перечислены явления, подтверждающие сложную структуру атома. Рассказано о сути опытов Резерфорда. Объяснена планетарная модель атома и указаны ее недостатки.

Задание №6

Рассказать о методах регистрации ионизирующих излучений (счетчик Гейгера, Камера Вильсона, пузырьковая камера,

метод фотоэмульсий). Что можно узнать по треку частицы?

Оценка	Показатели оценки
3	Рассказано не менее чем о двух методах регистрации.

4	Рассказано о четырех методах регистрации.
5	Рассказано о 4методах регистрации ионизирующих излучений,
	перечислены характеристики,
	которые можно определить по фотографии трека частицы.

Дать определение понятиям: планета, звезда, галактика, Вселенная. Привести примеры.

Оценка	Показатели оценки
3	Даны определения как минимум двум понятиям.
4	Даны определения трем понятиям.
5	Даны определения всем понятиям и приведены примеры.

Задание №8

- 1) Что такое электромагнитные колебания? Что называется колебательным контуром?
- 2) Записать уравнение электромагнитных колебаний. Какие величины входят в это уравнение?
- 3) Записать и объяснить формулу Томсона

Оценка	Показатели оценки
	Дано определение электромагнимтных колебаний, изображен колебательный контур
4	Дан ответ на два вопроса, или ответ полный, но есть недочеты
5	Дан полный ответ на все три вопроса.

Задание №9

- 1) Что такое радиоволны? Каковы их сойства?
- 2) Принципы радиосвязи (модуляция и детектирование)
- 3) Что такое радиолокация? Что можно определить с помощью радиолокатора?

Оценка	Показатели оценки
3	Дан ответ только на один вопрос
4	Даны ответа на два вопроса или ответ содержит недочеты.
5	Дан полный правильный ответ на три вопроса

- 1) .Какое явление называется фотоэффектом? Внутренним фотоэффектом?
- 2) Сформулируйте законы внешнего фотоэффекта.
- 3) Запишите и поясните закон Эйнштейна для фотоэффекта..

Оценка	Показатели оценки
3	Дан ответ на тва вопроса
4	Дан ответ на все вопросы, но в ответах есть недочеты
5	Дан ответ на все вопросы,

Дидактическая единица для контроля:

1.2 смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

Задание №1

Два заряда, находясь на расстоянии 0.05 м действуют друг на друга с силой $1.2 \cdot 10-4$ H,

а в некоторой непроводящей жидкости на 0,12 м с силой $1,5\cdot 10-5$ Н. Какова диэлектрическая проницаемость жидкости?

Оценка	Показатели оценки
3	Записан закон Кулона для вакуума и для среды.
4	Записан закон Кулона для вакуума и для среды. Задача решена в общем виде.
5	Записан закон Кулона для вакуума и для среды. Задача решена в общем виде и числовом выражении. Выполнена проверка размерности.

Задание №2 (из текущего контроля)

Какую площадь должны иметь пластины плоского конденсатора для того чтобы его электроемкость была равна 2 мк Φ , если между пластинами помещается слой слюды толщиной 0,2

MM? ($\varepsilon = 7$).

Оценка	Показатели оценки

3	Записаны необходимые и достаточные для решения задачи формулы (электроемкость плоского конденсатора). Выполнены необходимые математические преобразования. В расчетах есть ошибка (не переведены единицы измерения в СИ) или не более двух недочетов. Не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. (электроемкость плоского конденсатора). Выполнены необходимые математические преобразования.
5	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи). Сделан верный расчет. Выполнена проверка размерности.

Задание №3 (из текущего контроля)

Лодка плывет перпендикулярно течению со скоростью 4 км/час, скорость течения - 3 км/час. Какова скорость лодки относительно берега? Сделать чертеж.

Оценка	Показатели оценки
3	Записан закон сложения скоростей в векторной форме. Решение
	выполнено, но только в числовом виде или в проекции на оси
	координат допущена ошибка. Или: чертежа нет или он неверен.
	Или: в расчете допущена грубая математическая ошибка. Не
	выполнена проверка размерности.
4	Записан закон сложения скоростей в векторной форме и в
	проекции на оси координат. Сделан чертеж. Задача решена в
	общем и числовом виде. Есть недочеты (на чертеже не указаны
	параметры движения) или арифметическая ошибка в расчете.
	Или не выполнена проверка размерности.
5	Записан закон сложения скоростей в векторной форме и в
	проекции на оси координат. Задача решена в общем виде
	(векторная и скалярная формы) и в числовом. Сделан верный
	чертеж. Выполнена проверка размерности.

Задание №4 (из текущего контроля)

Дайте определение понятий:

Оценка	Показатели оценки
3	Дано верное определение 4 понятиям, или в определении есть ошибка
4	Дано определение всем понятиям, но в ответе есть неточности
5	Дано верное определение всем понятиям

Задание №5 (из текущего контроля)

Ответить на вопросы:

- 1) Что такое ЭДС?
- 2) В каких единицах она измеряется?
- 3) Какими способами можно определить ЭДС источника?

Оценка	Показатели оценки
3	Дан правильный ответ не менее чем на два вопроса.
4	Дан правильный ответ на три вопроса, но ответ неполный.
5	Дан полный правильный ответ на три вопроса.

Дидактическая единица для контроля:

1.3 смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

Задание №1

Фотокатод освещается светом с длиной волны $\lambda = 300$ нм.

Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией $B=0{,}20$ мТл перпендикулярно

линиям индукции этого поля и движутся по окружностям. Максимальный радиус такой окружности R=2 см.

Какова работа выхода для вещества фотокатода?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные формулы. В решении содержатся ошибки или не выполнена проверка размерности
4	Записаны необходимые и достаточные формулы. В решении содержатся недочеты не приводящие к неверному ответу

5

Задание №2 (из текущего контроля)

Сформулируйте три закона Ньютона. К каждому приведите пример.

Оценка	Показатели оценки
	Дан верный ответ на два вопроса, или в ответах отсутствуют примеры.
4	Дан верный ответ на все три вопроса, но в ответах есть недочеты
5	Дан верный ответ на три вопроса, приведены примеры.

Задание №3 (из текущего контроля)

Построить векторную диаграмму, рассчитать полное сопротивление, силу тока, коэффициент мощности, полное напряжение, напряжение на участках цепи для предложенного соединения R, C и L (последовательного или параллельного).

Оценка	Показатели оценки
3	Построена векторная диаграмма, не найдены 3-4 параметра, или недочеты на векторной диаграмме, в расчетах
	Построена векторная диаграмма. Есть недочеты или не найден один- два параметра
5	Построена векторная диаграмма, найдены все параметры.

Задание №4 (из текущего контроля)

Воздушный шар массой 50 кг движется вертикально вверх под действием силы Архимеда, которая равна 550 Н. Определите ускорение шара.

Оценка	Показатели оценки
3	Сделан чертеж, указаны силы, записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона в векторной форме и в проекциях). Не выполнены необходимые математические преобразования для определение ускорения шара, или в них содержится ошибка. Или в расчетах есть ошибка или не выполнен перевод единиц в СИ. Не сделана проверка размерности.

4	Сделан чертеж, указаны силы, записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона в векторной форме и в проекциях). Выполнены необходимые математические преобразования для определение ускорения шара. Сделан перевод единиц в СИ, выполнен расчет. В расчете допущен недочет или арифметическая ошибка. Или: Не
	выполнена проверка размерности.
5	Сделан чертеж, указаны силы, записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона в векторной форме и в проекциях). Выполнены необходимые математические преобразования для определение ускорения шара. Сделан перевод единиц в СИ, выполнен верный расчет и проверка размерности

Задание №5 (из текущего контроля)

В однородном МП индукцией 0,8 Тл на двух нитях подвешен проводник массой 200 г. На сколько

изменится сила натяжения нитей, если по проводнику пройдет ток силой 1 А. Длина проводника

40 см.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. На чертеже или в расчетах есть ошибки приводящие к неверному ответу. Или: Не сделан чертеж, не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы (второй закон Ньютона, сила Ампера). Сделан чертеж Сделан расчет .В расчете допущен недочет или негрубая арифметическая ошибка или : Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы (второй закон Ньютона, сила Ампера). Сделан чертеж Сделан верный расчет. Выполнена проверка размерности

Задание №6 (из текущего контроля)

На пружине жесткостью 40 Н/м висит груз массой 200 г. Определите длину пружины. В недеформированном состоянии длина пружины равна 10 см.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (закон Гука, сила тяжести, 2 закон Ньютона). Не выполнены математические преобразования(нахождение длины деформированной пружины) В математических преобразованиях или расчетах есть ошибка, приводящая к неправильному ответу. Или: не выполнен перевод единиц в СИ, не сделана проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы(закон Гука, сила тяжести, 2 закон Ньютона). Выполнены математические преобразования(нахождение длины деформированной пружины). Сделан перевод единиц в СИ. Сделан расчет. В расчете допущен недочет или арифметическая ошибка, не приводящая к неверному ответу. или . Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы(закон Гука, сила тяжести, 2 закон Ньютона). Выполнены математические преобразования(нахождение длины деформированной пружины). Сделан верный расчет. Выполнена проверка размерности.

Задание №7 (из текущего контроля)

- 1) Сформулируйте закон Гука (формула, формулировка).
- 2) Для каких деформаций он применим? Приведите примеры
- 3) Какова природа силы упругости, к чему она приложена и как направлена?

Оценка	Показатели оценки
3	Дан верный ответ на два вопроса, или в ответах отсутствуют
	примеры.
4	Дан верный ответ на все три вопроса, но в ответах есть недочеты
5	Дан верный ответ на три вопроса, приведены примеры.

Задание №8 (из текущего контроля)

По доскам в кузов грузовика равномерно втаскивают ящик массой 100 кг. Какую

нужно при этом приложить силу, если высота кузова 1,5 м, а длина досок 4,5 м. Коэффициент трения 0,3. Сделать чертеж на котором указать все силы, действующие на ящик.

Оценка	Показатели оценки
3	Записаны не все необходимые и достаточные для решения задачи формулы (второй закон Ньютона в векторной форме и в проекциях, сила трения, синус угла наклона). Или: Не сделан чертеж, или в нем есть грубые ошибки. Или:Неверно определены проекции, или: не сделаны математические преобразования для определения силы, или в них содержится грубая ошибка приводящая к неверному ответу.
4	Записаны необходимые и достаточные для решения задачи формулы(.второй закон Ньютона в векторной форме и в проекциях, сила трения, синус угла наклона). Сделан чертеж, но в нем есть недочеты. Сделаны математические преобразования для определения силы. Сделан расчет, но в расчете допущен недочет или арифметическая ошибка. Или: не выполнена проверка размерности
5	Записаны необходимые и достаточные для решения задачи формулы (второй закон Ньютона в векторной форме и в проекциях, сила трения, синус угла наклона). Сделан чертеж, верно определены проекции, сделаны математические преобразования для определения силы,. Сделан верный расчет. Выполнена проверка размерности.

Задание №9 (из текущего контроля)

В однородное магнитное поле с индукцией 0,3 Тл перпендикулярно линиям индукции влетает электрон, прошедший ускоряющую разность потенциалов 320 В. Описать траекторию электрона.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. На чертеже или в расчетах есть ошибки приводящие к неверному ответу. Или: Не сделан чертеж, не выполнена проверка размерности.

4	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж и расчет .В расчете допущен недочет или негрубая арифметическая ошибка или : Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан верный расчет. Выполнена проверка размерности

Дидактическая единица для контроля:

1.4 вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики

Задание №1

Рассказать об изобретении радио А.С.Поповым. Как устроены радиопередатчик и радиоприемник?

Что такое модуляция и детектирование?

Оценка	Показатели оценки
3	Рассказано об изобретении радио- назван автор открытия и год изобретения.
4	Рассказано об изобретении радио- назван автор открытия и год изобретения. Объяснено устройство и принцип действия передатчика и приемника
5	Рассказано об изобретении радио- назван автор открытия и год изобретения. Объяснено устройство и принцип действия передатчика и приемника. Дано определение модуляции и детектирования.

Задание №2 (из текущего контроля)

Расскажите коротко об открытии Герцем электромагнитных волн.

Оценка	Показатели оценки
3	Правильно передана суть открытия.
4	Рассказ содержит упоминание об открытом колебательном контуре.

Рассказ содержит физическое обоснование излучения ЭМВ Пример ответа:Электромагнитные колебания и волны Герц получал за счет возбуждения серии импульсов быстропеременного потока в вибраторе при помощи источника повышенного напряжения. Высокочастотные токи можно обнаружить при помощи контура. Частота колебаний при этом будет тем выше, чем выше его емкость и индуктивность. Но при этом большая частота не является гарантией интенсивного потока. Для проведения своих опытов Герц применил достаточно простое устройство, которое сегодня так и называют — "вибратор Герца"- колебательный контур открытого типа.

Дидактическая единица для контроля:

2.1 описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

Задание №1

При некотором минимальном значении задерживающей разности потенциалов фототок с поверхности лития,

освещаемого светом с частотой $v_1 = v$, прекращается. Изменив частоту света в 1,5 раза, установили,

что для прекращения фототока достаточно увеличить задерживающую разность потенциалов в 2 раза.

Чему равна частота падающего света?

Оценка	Показатели оценки
3	В решении содержатся ошибка или не выполнена проверка размерности
4	Решение содержит недочеты
5	Решение полное и правильное

Задание №2 (из текущего контроля)

Лифт массой 300 кг движется вертикально вниз. Сила упругости троса равна 280 Н. Определите ускорение лифта.

Оценка	Показатели оценки

3	Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона. Вес тела, движущегося с ускорением). Не выполнены математические преобразования или в них содержится ошибка. Или: В расчетах есть ошибка, приводящая к неверному ответу. Не сделана проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона. Вес тела, движущегося с ускорением). Выполнены математические преобразования для расчета ускорения лифта Сделан расчет .В расчете допущен недочет или негрубая арифметическая ошибка. Или :не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона. Вес тела, движущегося с ускорением). Выполнены необходимые математические преобразования. Сделан верный расчет. Выполнена проверка размерности.

Вычислить первую космическую скорость для Земли, если ее сообщают на высоте, равной двум радиусам Землиот ее поверхности.

Оценка	Показатели оценки
3	ВЫерно записаны формулы, но в решении содержится ошибка
4	Верно записаны формулы, решение, но в решении е сть недочеты, или арифметическая негрубая ошибка, или отсутствует проверка размерности
5	Верно записаны формулы, приведено полное правильное решение

Задание №4 (из текущего контроля)

Рассказать о принципах радиосвязи. Что такое модуляция и детектирование? Как они осуществляются на практике?

Оценка	Показатели оценки
	Перечислены основные принципы радиосвязи без раскрытия их физической сущности.
	Перечислены принципы радиосвязи, раскрыта физическая сущность процессов.

5	Перечислены принципы радиосвязи, изображены схемы
	приемника и передатчика, раскрыта физическая
	сущность процессов. Нарисована блок- схема передачи и приема
	радиосигнала.

На сколько увеличится масса тела, если дополнительно сообщит ему 9 ТДж энергии?

Оценка	Показатели оценки
3	Записана формула связи массы и энергии.
4	Записана формула связи массы и энергии, сделан расчет массы. Ошибка в переводе единиц.
5	Задача решена полно и правильно. Получен ответ в кг (или в г) Сделана проверка размерности

Дидактическая единица для контроля:

2.2 отличать гипотезы от научных теорий;

Задание №1

Чем отличается гипотеза от теории?

Приведите пример, когда гипотеза находила свое подтверждение. становясь теорией.

Оценка	Показатели оценки
3	Дано определение одному понятию.
4	Дано определение двум понятиям и показана разница между ними.
5	Дано определение двум понятиям и показана разница между ними. Приведен пример гипотеза-теория.

Задание №2 (из текущего контроля)

Сопоставить понятия из первой и второй групп, подобрав по смыслу:

1) на тела действует сила тяжести
2 каждое массивное тело порождает
силовое поле притяжения к этому телу,

	называемое гравитационным поле	cM.
3) теория	3) тела падают на Землю	
Оценка	Показатели оценки	
3	В сопоставлении допущены 2 ошибки	
4	В сопоставлении допущена одна ошибка	
5	Все понятия сопоставлены верно	

- 1. Сколько нуклонов, протонов и нейтронов содержится в ядре урана 92 U235?
- 2. При бомбардировке алюминия 13Al27 α-частицами образуется изотоп фосфора 15P30. Какая частица испускается при этом ядерном превращении? Запишите ядерную реакцию.
- 3. Период полураспада радиоактивного йода-131 равен 8 суток. Рассчитайте, за какое время количество атомов йода-131 уменьшится в 1000 раз.
- 4. Определите дефект массы, энергию связи и удельную энергию ядра атома азота 7N14.
- 5. В какой элемент превращается изотоп тория 90Th232 после α-распада, двух β-распадов и еще одного α-распада?

Оценка	Показатели оценки
3	Правильно решены 3 из 5 задач
4	Правильно решены 4 из 5 задач
5	Правильно решены 5 из 5 задач

Дидактическая единица для контроля:

2.3 делать выводы на основе экспериментальных данных;

Задание №1

Емкость конденсатора колебательного контура равна 0,02 мк Φ , максимальное значение напряжения

на его обкладках 500 В.

Определите максимальное значение электрической энергии в контуре и индуктивность катушки,

если сила тока в контуре 5 А. Сделать проверку размерности.

Оценка	Показатели оценки
3	Записаны формулы максимальной энергии электрического и
	магнитного полей.
	Определена максимальная энергия электрического поля
	конденсатора

4	Записаны формулы максимальной энергии электрического и магнитного полей. Определена максимальная энергия электрического поля конденсатора и индуктивность катушки.
5	Записаны формулы максимальной энергии электрического и магнитного полей. Определена максимальная энергия электрического поля конденсатора и индуктивность катушки. Выполнена проверка размерности.

Подъемный кран поднимает стальную плиту масой 780 кг со дня водоема глубиной 3 м на высоту 5 м над поверхностью воды. При этом сила натяжения троса остается постоянной. Известно, что в воде плита двигалась со скоростью 0, 2 м/с. С каким ускорением двигалась плита в воздухе, если сила сопротивления в воде составила 0,4 от силы тяжести, а в воздухе пренебрежимо мала.

Оценка	Показатели оценки
3	Сделан чертеж, указаны силы. Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона в векторной форме и в проекциях). Не выполнены математические преобразования или в них содержится ошибка. Или: В расчетах есть ошибка, приводящая к неверному ответу. Не сделана проверка размерности.
4	Сделан чертеж, указаны силы. Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона). Выполнены математические преобразования для расчета ускорения Сделан расчет .В расчете допущен недочет или негрубая арифметическая ошибка. Или :не выполнена проверка размерности.
5	Сделан чертеж, указаны силы. Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона. Вес тела, движущегося с ускорением). Выполнены необходимые математические преобразования. Сделан верный расчет. Выполнена проверка размерности.

Задание №3 (из текущего контроля)

В катушке сопротивлением 5 Ом течет ток 17 А. Индуктивность катушки 50мГн. Каким будет напряжение на зажимах катушки, если ток в ней равномерно

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы. в расчетах есть ошибки приводящие к неверному ответу, не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы Сделан расчет. В расчете допущен недочет или негрубая арифметическая ошибка или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан верный расчет. Выполнена проверка размерности

Дидактическая единица для контроля:

2.4 приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные яв-ления;

Задание №1 (из текущего контроля)

Приведите примеры открытий, служащих доказательством сложной структуры атома.

Открытие электрона, радиоактивности. Периодический закон Менделеева, фотоэффект, опыты Резерфорда (о каждом нужно немного рассказать)

Оценка	Показатели оценки
	Ответ неполный (приведены примеры, но нет описания открытий)
4	Ответ верен, но в описании открытий содержатся неточности)
5	Ответ верный, полный, развернутый, аргументированный.

Задание №2 (из текущего контроля)

Сформулируйте 1 закон термодинамики. Перечислите, какие экспериментальные данные положены в основу этого закона

Оценка	Показатели оценки

3	Сформулирован 1 законы термодинамики. Ответ неполный / неточный/ или не приведены примеры
4	Сформулирован 1 закон ТД, приведены примеры, но ответ содержит неточности.
5	Сформулированы 1 закон термодинамики. Приведены примеры и пояснения, ответ исчерпывающий.

- 1)Запишите основное уравнение МКТ и сформулируйте его физический смысл.
- 2) Перечислите все физические величины, которые в него входят.
- 3) Что такое идеальный газ? При каких условиях газ можно считать идеальным?

Оценка	Показатели оценки
3	Дан ответ на два вопроса, или в ответе содержатся неточности
4	дан ответ на три вопроса, но в ответе содержатся недочеты.
5	Дан ответ на все три вопроса.

Дидактическая единица для контроля:

2.5 приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

Задание №1

Что такое конденсатор? Каковы ег характеристики? Приведите примеры использования конденсаторов в технике.

Оценка	Показатели оценки	

3	Перечислено не менее двух примеров.
	Примерный ответ:
	В современной электронике применение конденсаторов весьма
	широкое и разностороннее.
	Разберем, в каких сферах техники, и с какой целью используются
	эти приборы:
	В телевизионной и радиотехнической аппаратуре – для
	реализации колебательных контуров,
	а также их блокировки и настройки. Также их используют для
	разделения цепей различной частоты,
	в выпрямительных фильтрах и т. д.
	В радиолокационных приборах – с целью формирования
	импульсов большой мощности.
	В телеграфии и телефонии – для разделения цепей постоянного и
	переменного токов, токов различной частоты,
	В телемеханике и автоматике – с целью реализации датчиков
	емкостного принципа,
	разделения цепей пульсирующего и постоянного токов,
	искрогашения контактов,
	в тиратронных импульсных генераторах и т. д.
	В сфере счетных устройств – в специальных запоминающих
	устройствах.
	В электроизмерительной аппаратуре – для получения образцов
	емкости,
	создания переменных емкостей (лабораторные переменные
	емкостные приборы,
	магазины емкости), создания измерительных устройств на
	емкостной основе и т. д.
	В лазерных устройствах – для формирования мощных импульсов.
	симметрирования кабелей, искрогашения контактов и прочее.
4	Перечислены 3-4 примера.
5	Перечислены 5 и более примеровс пояснениями к ним.
	ı .

Автомобиль движется со скоростью 72 км/ч. Приближаясь к пешеходному переходу он начинает торможение с ускорением 4 м/с2. Расчитать тормозной путь. Привести пример, показывающий, что перебегать дорогу перед идущим транспортом опасно.

Оценка	Показатели оценки
1	

3	Записаны необходимые и достаточные для решения задачи формулы (уравнение равнозамедленного движения). В расчетах есть математическая ошибка или не более двух недочетов. Либо не приведен пример.
4	Записаны необходимые и достаточные для решения задачи формулы (уравнение равнозамедленного движения). В расчетах есть не более двух недочетов.
5	Записаны необходимые и достаточные для решения задачи формулы (уравнение равнозамедленного движения). Сделан расчет, получен правильный ответ. Выполнена проверка размерности. Приведен пример.

- 1)Приведите пример равноускоренного движения.
- 2) Как рассчитать тормозной путь транспорта?
- 3) Как рассчитать необходимую для взлета самолета длину взлетной полосы?

Оценка	Показатели оценки
3	дан верныый ответ на два вопроса
4	Дан верный ответ на три вопроса, но в ответе имеются недочеты
5	Дан верный ответ на все три вопроса

Задание №4 (из текущего контроля)

Сформулируйте законы Ньютона и приведите по одному примеру использования каждого из законов.

Оценка	Показатели оценки
3	Приведены формулировки всех трех законов Ньютона, но в формулировках содержатся неточности. Или не приведены примеры, или примеры не соответствуют данным законам.
4	Приведены формулировки всех трех законов Ньютона. Приведены примеры на каждый закон. В ответе допущены один - два недочета
5	Приведены примеры, ответ полный и аргументированный, исчерпывающий.

Задание №5 (из текущего контроля)

ЭДС источника тока 5 В. К источнику тока присоединили лампу сопротивлением 12 Ом. Найдите

напряжение на лампе, если внутреннее сопротивление источника 0,5 Ом.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи). В расчетах есть ошибка или не более двух недочетов.
4	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи). Сделан расчет .В расчете допущен недочет или арифметическая ошибка. Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы (закон Ома для полной цепи). Сделан верный расчет. Выполнена проверка размерности.

Задание №6 (из текущего контроля)

Определите полную мощность элемента при сопротивлении внешней цепи 4 Ом, если внутреннее

сопротивление элемента 2 Ом, а напряжение на его зажимах 6 В.

Оценка	Показатели оценки
3	Записана формула мощности и закон Ома для полной цепи.
4	Записана формула мощности и закон Ома для полной цепи. Задача решена в общем виде.
5	Записана формула мощности и закон Ома для полной цепи. Задача решена в общем виде и в числовом. Записан верный ответ

Задание №7 (из текущего контроля)

Приведите примеры использования электромагнитных волн в технике и быту.

Оценка	Показатели оценки
3	Приведены 2-3 примера, без объяснения физической сущности

4	Приведены 3-4 примера с пояснениями.
5	Приведены примеры (3-5), показана общность и оригинальность
	использования, раскрыта физическая сущность явлений.

Дидактическая единица для контроля:

2.6 воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Ин-тернете, научно-популярных статьях;

Задание №1 (из текущего контроля)

Прочитать текст из научно-популярной статьи (сообщения СМИ, статьи интернета). Ответить на вопросы к тексту

Открытие рентгеновских лучей

Рентгеновские лучи были открыты в 1895 г. немецким физиком Вильгельмом Рентгеном. Рентген заметил, что при торможении быстрых электронов на любых препятствиях возникает сильно проникающее излучение, которое ученый назвал Хлучами (в дальнейшем за ними утвердится термин «рентгеновские лучи»). Когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки.

Схема современной рентгеновской трубки для получения X-лучей представлена на рисунке. Катод 1 представляет собой подогреваемую вольфрамовую спираль, испускающую электроны. Поток электронов фокусируется с помощью цилиндра 3, а затем соударяется с металлическим электродом (анодом) 2. При торможении электронов пучка возникают рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10-5 мм рт. ст.

Согласно проведенным исследованиям, рентгеновские лучи действовали на фотопластинку, вызывали ионизацию воздуха, не взаимодействовали с электрическими и магнитными полями. Сразу же возникло предположение, что рентгеновские лучи — это электромагнитные волны, которые в отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей имеют гораздо меньшую длину волны. Но если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию — явление, присущее всем видам волн. Дифракцию рентгеновских волн удалось наблюдать на кристаллах. Кристалл с его периодической структурой и есть то устройство, которое неизбежно должно вызвать заметную дифракцию рентгеновских волн, так как длина их близка к размерам атомов.

- 1.Согласно тексту, рентгеновские лучи образуются (выберите верный ответ)
- 1) при распространении электронов в вакууме
- 2) при распространении электронов в газах

- 3) при резком торможении быстрых электронов на препятствии
- 4) при взаимодействии электронов с молекулами газа
- 2. Что является доказательством волновой природы рентгеновских лучей?
- 1) высокая проникающая способность рентгеновских лучей
- 2) взаимодействие с электрическим полем
- 3) взаимодействие с магнитным полем
- 4) дифракция на кристаллах
- 3. Какова природа рентгеновских лучей?
- 4. Какие волновые явления присущи рентгеновскому излучению?

Оценка	Показатели оценки
3	Текст понят верно, в ответах на вопросы содержатся ошибки.
4	Текст понят верно, в ответах содержатся один-два недочета.
5	Текст понят и проанализирован. Ответы на вопросы полные и исчерпывающие.

Прочитайте текст

Туман Изучая взвешенные в воздухе частицы, можно более детально понять, как образуются роса, иней, дождь и снег. Одним из таких явлений является туман. Он представляет собой не успевшее подняться вверх облако, когда в силу погодных условий верхние слои воздуха достаточно холодные. Сквозь них испарения пробиться не могут, а температуры над поверхностью еще не достаточно, чтобы образовались капли. Туман чаще образуется в утренние часы, температура над поверхностью в этот момент опускается. Воздух становится холодным, и пары не способны подняться высоко. Пруды, озера и реки продолжают остывать, отдавая тепло с молекулами воды в окружающее пространство. Когда воздух постепенно прогревается, частички пара либо устремляются вверх, либо оседают на траву. Так появляются капельки росы. Ведь чаще мы наблюдаем их на рассвете. Туман скапливается в холмистой местности, где есть овраги, ущелья, низменности. - Читайте подробнее на FB.ru:

http://fb.ru/article/280150/obyyasnenie-kak-obrazuyutsya-rosa-iney-dojd-i-sneg Ответьте на вопросы:

- 1) Верно ли описано образование тумана? Какие ошибки или неточности содержатся в тексте?
- 2) Что представляет собой туман на самом деле?
- 3) Каковы условия образования тумана?

Оценка	Показатели оценки
--------	-------------------

3	Верно отвечено на два вопрооса
4	Верно отвечено на три вопроса, но есть неточности
5	Все ответы верные полные

Прочитать текст из научно-популярной статьи (сообщения СМИ, статьи интернета). Ответить на вопросы к тексту

Пример:

Открытие рентгеновских лучей

Рентгеновские лучи были открыты в 1895 г. немецким физиком Вильгельмом Рентгеном. Рентген заметил, что при торможении быстрых электронов на любых препятствиях возникает сильно проникающее излучение, которое ученый назвал Хлучами (в дальнейшем за ними утвердится термин «рентгеновские лучи»). Когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки. Схема современной рентгеновской трубки для получения Х-лучей представлена на рисунке. Катод 1 представляет собой подогреваемую вольфрамовую спираль, испускающую электроны. Поток электронов фокусируется с помощью цилиндра 3, а затем соударяется с металлическим электродом (анодом) 2. При торможении электронов пучка возникают рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10-5 мм рт. ст.

Согласно проведенным исследованиям, рентгеновские лучи действовали на фотопластинку, вызывали ионизацию воздуха, не взаимодействовали с электрическими и магнитными полями. Сразу же возникло предположение, что рентгеновские лучи — это электромагнитные волны, которые в отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей имеют гораздо меньшую длину волны. Но если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию — явление, присущее всем видам волн. Дифракцию рентгеновских волн удалось наблюдать на кристаллах. Кристалл с его периодической структурой и есть то устройство, которое неизбежно должно вызвать заметную дифракцию рентгеновских волн, так как длина их близка к размерам атомов.

- 1.Согласно тексту, рентгеновские лучи образуются
- 1) при распространении электронов в вакууме
- 2) при распространении электронов в газах
- 3) при резком торможении быстрых электронов на препятствии
- 4) при взаимодействии электронов с молекулами газа
- 2. Что является доказательством волновой природы рентгеновских лучей?
- 1) высокая проникающая способность рентгеновских лучей

- 2) взаимодействие с электрическим полем
- 3) взаимодействие с магнитным полем
- 4) дифракция на кристаллах
- 3. Какова природа рентгеновских лучей?

рентгеновские лучи — это электромагнитные волны, которые в отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей имеют гораздо меньшую длину волны

4. Какие волновые явления присущи рентгеновскому излучению?рентгеновское излучение представляет собой электромагнитные волны, онообнаруживает дифракцию, интерференцию, поляризацию- то есть — явления, присущие всем видам волн.

Оценка	Показатели оценки
3	Текст понят верно, в ответах на вопросы содержатся ошибки.
4	Текст понят верно, в ответах содержатся один-два недочета.
5	Приведены примеры полные и исчерпывающие.

Дидактическая единица для контроля:

2.7 применять полученные знания для решения физических задач;

Задание №1

Поверхность металла освещается светом с длиной волны 350 нм.

При некотором задерживающем потенциале фототок становится равным нулю.

При изменении длины волны на 50 нм задерживающую разность потенциалов пришлось увеличить на 0.59 В.

Считая постоянную Планка и скорость света известными, определите заряд электрона.

Оценка	Показатели оценки
3	В решении содержатся ошибка или не выполнена проверка размерности
4	Решение содержит недочеты
5	Решение полное и правильное

Задание №2 (из текущего контроля)

Во сколько раз увеличится время падения, если высота, с которой свободно падает камень, увеличится в 4 раза?

Оценка	Показатели оценки

3	Записаны необходимые и достаточные для решения задачи формулы (уравнение движения тела, падающего без начальной скорости, формула для расчета времени движения). В расчетах есть математическая ошибка или не более двух недочетов.
4	Записаны необходимые и достаточные для решения задачи формулы (уравнение движения тела, падающего без начальной скорости, формула для расчета времени движения).Сделан расчет. В расчете содержатся недочеты, не приводящие к ошибочному ответу, или не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы(уравнение движения тела, падающего без начальной скорости, формула для расчета времени движения). Сделан расчет, получен правильный ответ. Выполнена проверка размерности.

Точка движется по окружности радиусом 0,3 м с периодом 6,28 с. Найти линейную и угловую скорость точки, ее нормальное ускорение

Оценка	Показатели оценки
3	Записаны необходимые и достаточные формулы для решения задачи (формулы линейной и угловой скорости, нормального ускорения). Нет расчетов, или в расчетах допущена грубая ошибка, приводящая к неверному ответу, не выполнгена проверка размерности.
4	Записаны необходимые и достаточные формулы для решения задачи (формулы линейной и угловой скорости, нормального ускорения) В расчетах допущены недочеты (не более двух) не приводящие к неверному ответу, или проверка размерности сделана не для всех параметров.
5	Записаны необходимые и достаточные формулы для решения задачи. Все расчеты выполнены без ошибок, сделана проверка размерности.

Задание №4 (из текущего контроля)

На дифракционную решетку с периодом $d=0{,}005$ мм нормально к ее поверхности падает параллельный пучок монохроматического света с длиной волны $\lambda=500$ нм. За решеткой, параллельно ее плоскости, расположена тонкая собирающая линза с фокусным расстоянием F=6 см. Чему равно расстояние между максимумами

первого и второго порядков на экране, расположенном в фокальной плоскости линзы?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (формула решетки, расстояние между максимумами) и выполнены необходимые математические преобразования. Сделан чертеж. В чертеже расчетах есть ошибки, приводящие к неверномуо твету.
4	Записаны необходимые и достаточные для решения задачи формулы(формула решетки, расстояние между максимумами) и выполнены необходимые математические преобразования. Сделан чертеж. В расчете или чертеже допущены недочеты, не приводящие к ошибочному ответу
5	Записаны необходимые и достаточные для решения задачи формулы(формула решетки, расстояние между максимумами) и выполнены необходимые математические преобразованияВыполнен чертеж. Сделан верный расчет. Выполнена проверка размерности.

Задание №5 (из текущего контроля)

На каком расстоянии от центра Земли ускорение свободного падения будет равно 2,5 м\c2? Радиус Земли принять равным 6400 км.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (Закон всемирного тяготения, формула ускорения свободного падения). Не выполнены математические преобразования для расчета расстояния или в них содержится грубая ошибка. Или: В расчетах есть ошибка, приводящая к неверному ответу. Не сделана проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы (Закон всемирного тяготения, формула ускорения свободного падения). Выполнены математические преобразования для расчета расстояния. В расчетах есть ошибка, Или: Не сделана проверка размерности

5	Записаны необходимые и достаточные для решения задачи
	формулы Закон всемирного тяготения, формула ускорения
	свободного падения). Выполнены математические
	преобразования для расчета расстояния. Сделан верный расчет.
	Выполнена проверка размерности.

При разомкнутом ключе амперметр показывает ток 1 А. Какой ток покажет амперметр при

замкнутом ключе? ЭДС источника 10 B, внутреннее сопротивление источника 10м, R1 = 5 Om,

R2= 4 Ом, R3 неизвестно.

Оценка	Показатели оценки
3	Рассмотрены два режима работы цепи- при замкнутом и при разомкнутом ключе.
4	Записан закон Ома, найдено R3.
5	Рассмотрены два режима работы цепи- при замкнутом и при разомкнутом ключе, найдено R3 и I2.

Задание №7 (из текущего контроля)

Вольтметр рассчитан на измерение напряжений до максимального значения 30 В. При этом через

вольтметр идет ток 10 мА. Какое добавочное сопротивление нужно присоединить к вольтметру,

чтобы им можно было измерять напряжение до 150 В?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (расчет добавочного сопротивления). В расчетах есть ошибка или не более двух недочетов. Не выполнена проверка размерности

4	Записаны необходимые и достаточные для решения задачи формулы(расчет добавочного сопротивления) Сделан расчет .В расчете допущен недочет или арифметическая ошибка. Или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы (расчет добавочного сопротивления) Сделан верный расчет. Выполнена проверка размерности.

Прямолинейный проводник с силой тока 4,5 А помещен в однородное магнитное поле с индукцией 0,1 Тл перпендикулярно силовым линиям. Определить длину проводника, если при его перемещении на 20 см совершается работа 9мДж.

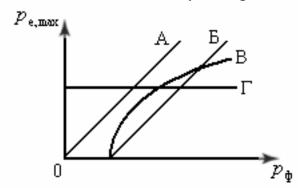
Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. На чертеже или в расчетах есть ошибки приводящие к неверному ответу. Или: Не сделан чертеж, не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан расчет. В расчете допущен недочет или негрубая арифметическая ошибка или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан верный расчет. Выполнена проверка размерности

Задание №9 (из текущего контроля)

Катушка из N=1000 витков провода находится в однородном магнитном поле , причем ось катушки составляет угол 60 градусов с вектором магнитной индукции. Радиус катушки 2 см. Магнитная индукция изменяется на 40 мТл за 2 с.Определить ЭДС индукции в катушке.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. На чертеже или в расчетах есть ошибки приводящие к неверному ответу. Или: Не сделан чертеж, не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан расчет. В расчете допущен недочет или негрубая арифметическая ошибка или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж Сделан верный расчет. Выполнена проверка размерности

Вдоль главной оптической оси собирающей линзы с фокусным расстоянием F=12 см расположен предмет BA. Конец которого находится на расстоянии d1=17.9 см от линзы, а начало - на расстоянии d2=18.1 см. Найдите линейное увеличение Γ изображения B1A1 предмета.


Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертеж. В расчетах есть ошибка или не более двух недочетов.
4	Записаны необходимые и достаточные для решения задачи формулы. Сделан чертежВ расчете или чертеже допущен недочет или арифметическая ошибка.
5	Записаны необходимые и достаточные для решения задачи формулы.Выполнен чертеж. Сделан верный расчет. Выполнена проверка размерности.

Дидактическая единица для контроля:

2.8 определять характер физического процесса по графику, таблице, формуле; **Задание №1**

Во время фотоэффекта максимальный импульс $P_{e,\mathrm{max}}$ электронов, выбиваемых из

металлической пластины, зависит от импульса фотонов $\, {m P}_{\Phi} \,$

согласно графику

Оценка	Показатели оценки
3	Дан верный ответ без объяснений
4	Проанализирован один ответ.
5	Дан полный правильный ответ, проанализирнованы все графики

Задание №2 (из текущего контроля)

Движение двух тел задано уравнениями: x1=3+0.5t, x2=8-2t. Описать характер движения тел. Найти время и координату места встречи графически и аналитически.

Оценка	Показатели оценки
3	Не описан характер движения. Задача решена только аналитически или только графически. Или: неверно определен один из параметров (время или координата)
4	Верно описан характер движения тел. Задача решена только одним способом (графически или аналитически). Определено время и место встречи тел. Или: на графике есть недочеты, не приводящие к неверному ответу.
5	Верно описан характер движения тел. задача решена аналитически и графически. Найдено время и место встречи тел.

Задание №3 (из текущего контроля)

Сопоставьте величины и формулы их расчета:

Работа тока	P=IU	
Сила тока	E=Act/q	
Напряжение	A=IUt	

ЭДС	U=A/q	
Мощность тока	I=q/t	
Сопротивление	R=U/I	

Оценка	Показатели оценки
3	Верных ответов не менее 3х
4	Верных ответов не менее 5
5	Все ответы верны

С помощью тонкой собирающей линзы получается действительное увеличенное изображение плоского предмета. Если предмет находится на расстоянии d=6 см от линзы, то изображение получается увеличенным в 2 раза. На сколько надо сместить предмет, чтобы получить изображение, увеличенное в 10 раз?

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы (формула линзы, увеличение линзы). Сделан чертеж. В расчетах есть ошибка или не более двух недочетов.
4	Записаны необходимые и достаточные для решения задачи формулы (формула линзы, увеличение линзы). Сделан чертежВ расчете или чертеже допущен недочет или арифметическая ошибка.
5	Записаны необходимые и достаточные для решения задачи формулы (формула линзы, увеличение линзы).Выполнен чертеж. Сделан верный расчет. Выполнена проверка размерности.

Задание №5 (из текущего контроля)

ЭДС источника тока 3 B, его внутреннее сопротивление 1 Ом, сопротивления резисторов R1=R2

= 1,75 Ом, R3 = 2 Ом, R4 = 6 Ом. Какова сила тока в резисторе R4?

Оценка	Показатели оценки
3	Найдено полное сопротивление цепи.
	Найдено полное сопротивление цепи и сила тока в неразветвленной части цепи

5	Записаны формулы мощности для двух случаев. задача решена в
	общем виде, числовой
	ответ получен верно.

Дидактическая единица для контроля:

2.9 измерять ряд физических величин, представляя результаты измерений с учетом их погрешностей;

Задание №1

Измерить фокусное расстояние и оптическую силу собирающей линзы. Результат представить с учетом погрешности измерений.

Оборудование: Линза собирающая, экран, линейка.

Оценка	Показатели оценки
3	Измерено фокусное расстояние собирающей линзы.
4	Измерено фокусное расстояние и оптическая сила собирающей линзы.
5	Измерено фокусное расстояние и оптическая сила собирающей линзы. Результат представлен с учетом погрешности измерений.

Задание №2 (из текущего контроля)

Измерить температуру в классе, ответ записать с учетом погрешности измерительного прибора

Оценка	Показатели оценки
3	Выполнено измерение, приведено значение температуры воздуха без учета погрешности
4	Выполнено измерение, приведено значение температуры воздуха с учетом приборной погрешности.
5	Выполнено измерение, ответ записан с учетом приборной погрешности и погрешности измерения.

Задание №3 (из текущего контроля)

Вам даны: амперметр, вольтметр, резистор с неизвестным сопротивлением, источник тока, ключ, соединительные провода. Соберите цепь и определите сопротивление резистора с учетом погрешности приборов.

Оценка	Показатели оценки

	Правильно собрана цепь, определено сопротивление резистора. Не сделан расчет погрешности.
	Правильно собрана цепь, определено сопротивление резистора. Сделан расчет погрешности, но в расчетах есть один-два недочета.
5	Правильно собрана цепь, определено сопротивление резистора. Сделан расчет погрешности

Дидактическая единица для контроля:

2.10 использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи; оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и защиты окружающей среды.

Задание №1 Перечислить способы защиты от радиации

Оценка	Показатели оценки
3	перечислены не менее трех способов защиты
3 4	перечислены не менее 5 способов защиты

Ответ полный, перечислены все способы защиты Пример:
 Основными способами защиты от ионизирующих излучений являются:
 • защита расстоянием;
 • защита экранированием:

- от альфа-излучения лист бумаги, резиновые перчатки, респиратор;
- от бета-излучения плексиглас, тонкий слой алюминия, стекло, противогаз;
- от гамма-излучения тяжелые металлы (вольфрам, свинец, сталь и пр.); гамма-излучение поглощается тем эффективнее, чем больший средний Z материалов, поэтому тонна свинца может быть эффективнее, чем тонна железа.
- от нейтронов вода, полиэтилен, другие полимеры, бетон; по закону сохранения энергии нейтроны эффективно рассеивают энергию на легких ядрах, поэтому слой воды или полиэтилена для защиты от нейтронов будет гораздо эффективнее, чем той же толщины броневая сталь;
- защита временем;
- химическая защита.

Задание №2 (из текущего контроля)

Шар радиуса R и массой M подвешен на нити длиной l, закрепленной на вертикальной стенке. Найти силу, с которой шар действует на стенку.

Оценка	Показатели оценки
3	Записаны необходимые и достаточные для решения задачи формулы(правило моментов, условие равновесия). Не выполнены математические преобразования, или в них содержится ошибка. Не выполнен перевод единиц в СИ. Не выполнена проверка размерности.

4	Записаны необходимые и достаточные для решения задачи формулы. Выполнены математические преобразованияВ расчете допущен недочет или негрубая арифметическая ошибка. Или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан верный расчет. Выполнена проверка размерности.

Объясните принцип работы и приведите примеры использования в быту барометраанероида.

Оценка	Показатели оценки
3	Приведен пример, ответ неполный или содержит ошибки.
4	Приведен пример, ответ неполный.
5	Приведен пример, ответ исчерпывающий.

Задание №4 (из текущего контроля)

Что такое изотопы? Как их получают? Привести примеры использования радиоактивных изотопов.

Примеры:Превращение атомных ядер веществ в другие ядра. Применение радиоактивных изотопов и меченых соединений для исследования органов и систем человека с целью распознавания и лечения болезней. Радиоактивный метод анализа вещества. Радиоизотопные источники энергии.

Оценка	Показатели оценки
3	В ответе содержатся недочеты или ответ неполный.
4	В ответе содержатся один-два недочета.
5	Приведены примеры полные и исчерпывающие.

Задание №5 (из текущего контроля)

Рассчитать тормозной путь автомобиля движущегося со скоростью 72 км/ч, если коэффициент трения 0,7. Во сколько раз увеличится тормозной путь при скорости 90 км/ч на мокрой дороге при коэффициенте трения 0.5? Почему опасно перебегать улицу перед движущимся транспортом?

Оценка	Показатели оценки

3	Записаны необходимые и достаточные для решения задачи формулы (2 закон Ньютона, сила трения, работа силы трения. Или закон сохранения энергии). Не выполнены математические преобразования для расчета тормозного пути, или в них содержится ошибка. Не выполнен перевод единиц в СИ. Или : в расчетах содержится ошибка, приводящая к неверному результату. Или: задача решена не полностью (нет ответа на второй вопрос). Не выполнена проверка размерности.
4	Записаны необходимые и достаточные для решения задачи формулы. (2 закон Ньютона, сила трения, работа силы трения. Или закон сохранения полной механической энергии). Выполнены математические преобразования для расчета тормозного путиСделан расчет .В расчете допущен недочет или негрубая арифметическая ошибка. Или: Не выполнена проверка размерности.
5	Записаны необходимые и достаточные для решения задачи формулы. Сделан верный расчет. Выполнена проверка размерности.