Контрольно-оценочные средства для проведения текущего контроля

по ЕН.01 Элементы высшей математики (2 курс, 4 семестр 2023-2024 уч. г.)

Текущий контроль №1

Форма контроля: Контрольная работа (Опрос)

Описательная часть: Письменная контрольная работа

Задание №1

Исследовать ряды на сходимость:

$$\sum_{n=1}^{\infty} \frac{1}{n^2(n-1)}$$

$$\sum_{n=1}^{\infty} \frac{3n-1}{2n}$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$$

Оценка	Показатели оценки
5	Исследованы 3 ряда.
4	Исследованы 2 ряда.
3	Исследован 1 ряд.

Задание №2

Исследовать ряды на сходимость:

$$\sum_{n=1}^{\infty} \frac{1}{3^{n}(n+1)}$$

$$\sum_{n=1}^{\infty} \frac{1}{3^{n}(n+1)}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2(n-1)}$$

Оценка	Показатели оценки
5	Исследованы 3 ряда.
4	Исследованы 2 ряда.
3	Исследован 1 ряд.

Исследовать ряд на сходимость, используя признак сравнения или предел общего члена:

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1) \cdot 2^{2n-1}}$$

Используя признак Даламбера, исследовать ряд на сходимость:

$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$$

$$\sum_{n=1}^{\infty} \frac{n}{3 \cdot 2^n}$$

Оценка	Показатели оценки
5	Исследованы 3 ряда.
4	Исследованы 2 ряда.
3	Исследован 1 ряд.

Задание №4

Исследовать ряд на сходимость, используя признак сравнения или предел общего члена:

$$\sum_{n=1}^{\infty} \frac{1}{(n+1) \cdot (n+3)}$$

Используя признак Даламбера, исследовать ряд на сходимость:

$$\sum_{n=1}^{\infty} \frac{5^n}{n^3}$$

$$\sum_{n=1}^{\infty} \frac{3^n}{n \cdot (n+1)}$$

Оценка	Показатели оценки
5	Исследованы 3 ряда.
4	Исследованы 2 ряда.
3	Исследован 1 ряд.

Текущий контроль №2

Форма контроля: Контрольная работа (Опрос)

Описательная часть: Письменная контрольная работа

Задание №1

Сформулируйте определение дифференциального уравнения 2 порядка. Объясните решение дифференциальных уравнений 2 порядка вида: Y'' + pY' + gY = 0 (p , g - const). Приведите свои примеры.

Оценка	Показатели оценки
5	Дано определение дифференциального уравнения 2 порядка, записаны формулы в случае дискриминант больше нуля, дискриминант равен нулю и дискриминант меньше нуля; приведены примеры для каждого случая.
4	Дано определение дифференциального уравнения 2 порядка и все случаи рассмотрены (дискриминант больше нуля, дискриминант равен нулю и дискриминант меньше нуля).
3	Приведены только примеры.

Задание №2

Найдите общее и частное решения дифференциального уравнения вида: (3x + 7)dy = (5y - 9) dx, у (1) = 2

Оценка	Показатели оценки
5	Верно решено дифференциальное уравнение, найдены общее и частное решения.
4	Верно решено дифференциальное уравнение, найдено общее решение.

3	Верно решено дифференциальное уравнение, не указан верный ответ.
---	--

Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами.

Оценка	Показатели оценки
5	Верно найдено общее решение 3 уравнений.
4	Верно найдено общее решение 2 уравнений.
3	Верно найдено общее решение 1 уравнения.

Задание №4

Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами.

Оценка	Показатели оценки
5	Верно найдено общее решение 3 уравнений.
4	Верно найдено общее решение 2 уравнений.
3	Верно найдено общее решение 1 уравнения.

Задание №5

Решите дифференциальные уравнения 1 порядка вида:

$$1) xdx = (y + 8) dy$$

2)
$$dx/4x - 7 = dy/5y - 6$$

3) dx / (2y - 3) = dy / (4x + 9)

Оценка	Показатели оценки
5	Верно решены все дифференциальные уравнения.
4	Верно решены 2 уравнения.
3	Верно решено одно уравнение.

Текущий контроль №3

Форма контроля: Контрольная работа (Опрос)

Описательная часть: Письменная контрольная работа

Задание №1

Найдите решение дифференциальных уравнений: вида:

$$1) ydy = (x+2)dx$$

2)
$$(x-5) dy = y dx$$

3) (3x - 7) dy = (2y + 9) dx

Оценка	Показатели оценки
5	Верно решены все уравнения.
4	Верно решены 2 уравнения.
3	Верно решено одно уравнение.

Задание №2

Решите систему линейных алгебраических уравнений 3 способами: методом Гаусса, методом Крамера и матричным методом:

Оценка	Показатели оценки
5	Система решена верно 3 способами.
4	Система решена верно 2 способами.
3	Система решена верно 1 способом.

Задание №3

Решите систему линейных алгебраических уравнений 3 способами: методом Гаусса, методом Крамера и матричным методом:

$$\begin{cases} X + Y - 2Z = -7; \\ 2X + 3Y - Z = -4; \\ 3X - 2Y - 2Z = 5. \end{cases}$$

Оценка	Показатели оценки

5	Система решена верно 3 способами.
4	Система решена верно 2 способами.
3	Система решена верно 1 способом.

Составьте матрицы А и В любого порядка. Найдите сумму матриц (А + В), разность матриц (А -

В) и произведение матриц (А * В).

Оценка	Показатели оценки
5	Верно найдены сумма, разность и произведение матриц.
4	Найдена только сумма матриц и разность. Есть произведение матриц хотя бы для первой строки.
3	Найдены только сумма и разность матриц.

Задание №5

Составьте определитель матрицы 3 порядка и вычислите значение определителя для матрицы (матрицу возьмите квадратную).

<u> </u>	1 0	
Оценка	Показатели оценки	
5	Матрица составлена верно и верно вычислили определитель, составленной матрицы.	
4	Верно составлена матрица и есть вычисления определителя по определению.	
3	Верно составлена матрица.	

Текущий контроль №4

Форма контроля: Контрольная работа (Опрос)

Описательная часть: Письменная контрольная работа

Задание №1

Сформулируйте определение (запишите формулу) скалярного, векторного и смешанного произведения векторов. Приведите примеры на вычисление скалярного произведения, векторного произведения.

Оценка	Показатели оценки
5	Даны 3 определения, приведены решения примера на вычисление скалярного произведения, найдено верно векторное произведение.
4	Даны 2 определения: векторного и скалярного произведения. Приведен пример.
3	Дано 1 определение скалярного или векторного произведения.

Задание №2

Составьте уравнения прямых, проходящих через точку А(4; -1)

- 1) параллельно прямой х-3у+7=0
- 2) перпендикулярно прямой x+2 = y+12

3) под углом 45 градусов к прямой 3у-2=0

Оценка	Показатели оценки
5	Верно выполнены 3 задания.
4	Верно выполнены 2 задания.
3	Верно выполнено 1 задание.

Задание №3

Составьте уравнения прямых, проходящих через точку А(4; -1)

- 1) параллельно прямой 2х-у+3=0
- 2) перпендикулярно прямой x-4 = y+10

3) под углом 45 градусов к прямой 6у-2=0

3) Hea jiii	b) hog jisiom is ipaggeob k iipamon og 2 o	
Оценка	Показатели оценки	
5	Дано верное решение 3 заданий.	
4	Дано верное решение 2 заданий.	
3	Дано верное решение 1 задания.	

Задание №4

Укажите координаты вектора $\vec{c} = -3\vec{a} + 2\vec{b}$, если $\vec{a} = -2\vec{i} + \vec{j}$ и $\vec{b} = 2\vec{i}$.

Векторы $\vec{a}(3; x; 6)$ и $\vec{b}(6; 6; y)$ коллинеарные. Найдите $_{2)}$ произведение xy.

 $_{3)}$ Даны векторы $\vec{a}(7;3)$ и $\vec{b}(5;2)$. Вычислить $|\vec{a}+\vec{b}|$.

Оценка	Показатели оценки
5	Дано верное решение 3 заданий.
4	Дано верное решение 2 заданий.

Найдите длину вектора \vec{a} , если этот вектор коллинеарен вектору $\vec{b} = 3\vec{i} - 2\vec{j} + \vec{k}$ и $\vec{a} \cdot \vec{b} = 7$.

При каком значении n векторы $\vec{a}(n; -2; 1)$ и $\vec{b}(n; 1; -n)$ 2) перпендикулярны?

Даны векторы $\vec{a}(6;2;1)$ и $\vec{b}(0;-1;2)$. Найдите длину вектора $\vec{a}(6;2;1)$ и $\vec{b}(6;2;1)$ и $\vec{b}(6;2;1)$ и $\vec{b}(6;2;1)$ найдите длину вектора

Оценка	Показатели оценки
5	Дано верное решение 3 заданий.
4	Дано верное решение 2 заданий.
3	Дано верное решение 1 задания.

Текущий контроль №5

Форма контроля: Самостоятельная работа (Опрос)

Описательная часть: самостоятельная работа

Задание №1

Найдите сумму, разность, произведение и частное комплексных чисел вида:

1 . x = 2 - 3i y = 4 + 7i

Оценка	Показатели оценки
5	Верно найдены решения всех заданий (найдена сумма, разность, произведение и частное комплексных чисел).
4	Верно найдены решения для суммы, разности и произведения комплексных чисел.
3	Верно найдены сумма и разность комплексных чисел.

Задание №2

Сформулируйте определение комплексного числа и покажите на чертеже геометрическую

интепретацию комплексного числа.

Оценка	Показатели оценки
5	Верно дано определение, показаны на чертеже комплексные числа; записана формула для комплексного числа в виде алгебраического выражения.
4	Дано определение комплексного числа и рассмотрен один случай на чертеже для 1 четверти.
3	Верно дано определение комплексного числа, дана формула в виде алгебраического выражения для записи комплексного числа.

Задание №3

Вычислите пределы функций:

1) $\lim (3x-2)$ при $x \to 4$; 2) $\lim (3x^2 - 8x + 1) / (x^2 - 5x)$ при $x \to \kappa$ бесконечности ; 3) $\lim (4x + 5) x \to +$,бесконечности

Оценка	Показатели оценки
5	Верно решены 3 задания.
4	Верно решены 2 задания.
3	Верно решено 1 задание.