# Перечень теоретических и практических заданий к дифференцированному зачету по ОП.04 Техническая механика (2 курс, 4 семестр 2024-2025 уч. г.)

Форма контроля: Индивидуальные задания (Опрос)

Описательная часть: По выбору выполнить 1 теоретическое задание и 1 практическое задание

#### Перечень теоретических заданий:

Задание №1

Вариант 1

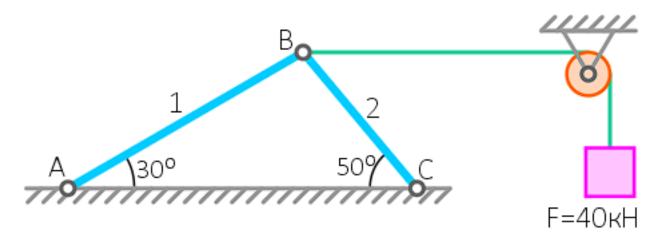
| Вариант 1 |                                    |                                                                                                    |               |  |
|-----------|------------------------------------|----------------------------------------------------------------------------------------------------|---------------|--|
| №<br>п.п  | Задание                            | Ответы                                                                                             | Код<br>ответа |  |
| 1         | Напряжение – это                   | сила, приходящаяся на единицу<br>площади.                                                          | 1             |  |
|           |                                    | сила, противодействующая<br>разрушению стержня.                                                    | 2             |  |
|           |                                    | количественная мера<br>интенсивности внутренних сил в<br>данной точке рассматриваемого<br>сечения. | 3             |  |
|           |                                    | сила, противодействующая<br>деформации тела.                                                       | 4             |  |
| 2         | Закон Гука при растяжении (сжатии) | $\sigma = A \cdot \varepsilon$                                                                     | 5             |  |
|           |                                    | $\tau = \frac{N_z}{A}$                                                                             | 6             |  |
|           |                                    | $\sigma = \mathbf{E} \cdot \boldsymbol{\varepsilon}$                                               | 7             |  |
|           |                                    | $\sigma \ge \frac{N_z}{A}$                                                                         | 8             |  |
| 3         | Коэффициент                        | модулем сдвига                                                                                     | 9             |  |
|           | пропорциональности $G$ называется  | модулем упругости второго рода                                                                     | 10            |  |
|           |                                    | модулем продольной упругости                                                                       | 11            |  |
|           |                                    | верны ответы А и Б.                                                                                | 12            |  |

| Оценка | Показатели оценки                          |
|--------|--------------------------------------------|
| 5      | Даны правильные ответы на 3 вопроса теста. |
| 4      | Даны правильные ответы на 2 вопроса теста. |
| 3      | Дан правильный ответ на 1 вопрос теста.    |

Жесткая рама (см. рисунок) закреплена в точке A неподвижным цилиндрическим шарниром, а в точке B прикреплена к шарнирной опоре на катках или к невесомому стержню, который прикреплен к раме и неподвижной поверхности шарнирами. В точке C к раме прикреплен трос, перекинутый через блок и несущий на конце груз F=25  $\kappa H$ . Кроме того на раму действует пара сил с моментом M=60  $\kappa Hxm$  и две силы F1 и F2, которые направлены под угол  $\alpha I$  и  $\alpha 2$ . Числовые значения сил приведены ниже в таблице данных, а их направление и расположение показано на рисунке. Определить реакции опор рамы, при расчетах размер  $\alpha$ =0,5 m.

#### Методические указания:

- 1. Сделать рисунок рамы в примерном масштабе.
- 2. Показать на рисунке действующие активные силы и момент пары сил.
- 3. Поместить раму в систему координат, т.е. показать на рисунке оси координат x и y, расположив их в плоскости рамы.
- 4. Отбросить наложенные реакции в точках А и В связи, а их действие заменить реакциями.
- 5. Составить уравнения равновесия плоской системы сил, действующих на раму.
- 6. Решить составленные уравнения равновесия и определить искомые реакции опор связей.


Таблица данных к заданию № 1

| Силы и углы       Вариант     Номер рисунка     F <sub>I</sub> , а <sub>I</sub> , F <sub>2</sub> , а <sub>2</sub> , кН град.       1     1     10     45     20     30       2     2     15     60     25     45       3     3     20     30     10     60       4     4     25     30     40     45       5     2     30     45     30     60 |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Варнант рисунка         РГ, кН град.         кН град.         кН град.           1         1         10         45         20         30           2         2         15         60         25         45           3         3         20         30         10         60           4         4         25         30         40         45 |         |
| 1 1 10 45 20 30<br>2 2 15 60 25 45<br>3 3 20 30 10 60<br>4 4 25 30 40 45                                                                                                                                                                                                                                                                       |         |
| 2 2 15 60 25 45<br>3 3 20 30 10 60<br>4 4 25 30 40 45                                                                                                                                                                                                                                                                                          |         |
| 3 3 20 30 10 60<br>4 4 25 30 40 45                                                                                                                                                                                                                                                                                                             |         |
| 3 3 20 30 10 60<br>4 4 25 30 40 45                                                                                                                                                                                                                                                                                                             |         |
| PHCV PHCV                                                                                                                                                                                                                                                                                                                                      |         |
| 5 2 30 45 30 60 20 20                                                                                                                                                                                                                                                                                                                          | нок 1   |
|                                                                                                                                                                                                                                                                                                                                                | 1101. 1 |
| 6 3 35 30 20 60                                                                                                                                                                                                                                                                                                                                |         |
| 7 1 40 45 20 30                                                                                                                                                                                                                                                                                                                                |         |
| 8 4 45 60 15 30                                                                                                                                                                                                                                                                                                                                |         |
| 9 2 50 45 20 60                                                                                                                                                                                                                                                                                                                                |         |
| 10 1 55 60 15 30                                                                                                                                                                                                                                                                                                                               |         |
| 11 4 20 30 55 45 Pucys                                                                                                                                                                                                                                                                                                                         | нок 2   |
| 12 2 25 45 45 60                                                                                                                                                                                                                                                                                                                               |         |
| 13 3 10 60 30 30                                                                                                                                                                                                                                                                                                                               |         |
| 14 1 40 45 35 30 R M F                                                                                                                                                                                                                                                                                                                         |         |
| 15 2 30 60 20 45                                                                                                                                                                                                                                                                                                                               |         |
| 16 3 20 60 10 30                                                                                                                                                                                                                                                                                                                               |         |
| 17 4 20 30 15 45                                                                                                                                                                                                                                                                                                                               |         |
| 10 12 15 50 25 00                                                                                                                                                                                                                                                                                                                              | унок 3  |
| 19 3 20 60 60 45                                                                                                                                                                                                                                                                                                                               |         |
| 20 4 15 30 40 60                                                                                                                                                                                                                                                                                                                               |         |
| 21 4 60 45 50 30                                                                                                                                                                                                                                                                                                                               |         |
| 22 1 20 60 55 45                                                                                                                                                                                                                                                                                                                               |         |
| 23 3 55 30 25 60                                                                                                                                                                                                                                                                                                                               |         |
| 24 2 30 30 45 60                                                                                                                                                                                                                                                                                                                               |         |
| 25 1 45 45 60 45 Pucy                                                                                                                                                                                                                                                                                                                          | нок 4   |

| Оценка | Показатели оценки                                                                                    |
|--------|------------------------------------------------------------------------------------------------------|
| 5      | 1. Верно выполнен рисунок с указанием всех действующих нагрузок на раму.                             |
|        | 2. Тело «освобождено» от связей и показаны точки и направления реакций (составлена расчетная схема). |
|        | 3. Правильно составлены уравнения равновесия плоской системы сил, действующих на раму.               |
|        | 4. Определены значения искомых реакций, исходя из составленных уравнений равновесия.                 |
|        | 5. Подробно объяснены параметры, входящие в уравнения равновесия и ход решения.                      |
|        |                                                                                                      |

| 4 | 1. Верно выполнен рисунок с указанием всех действующих нагрузок на раму.                             |  |  |  |
|---|------------------------------------------------------------------------------------------------------|--|--|--|
|   | 2. Тело «освобождено» от связей и показаны точки и направления реакций (составле расчетная схема).   |  |  |  |
|   | 3. Правильно составлены уравнения равновесия плоской системы сил, действующих раму.                  |  |  |  |
|   | 4. Определены значения искомых реакций, исходя из составленных уравнений равновесия.                 |  |  |  |
| 3 | 1. Верно выполнен рисунок с указанием всех действующих нагрузок на раму.                             |  |  |  |
|   | 2. Тело «освобождено» от связей и показаны точки и направления реакций (составлена расчетная схема). |  |  |  |
|   | 3. Правильно составлены уравнения равновесия плоской системы сил, действующих на раму.               |  |  |  |

Задание №3Определить реакции связей в опорах. (Приведен один из вариантов заданий)



| Оценка | Показатели оценки                           |
|--------|---------------------------------------------|
| 5      | Определены и расчитаны три реакции связей.  |
| 4      | Определены и расчитаны две реакции связей.  |
| 3      | Определена и расчитана одна реакции связей. |

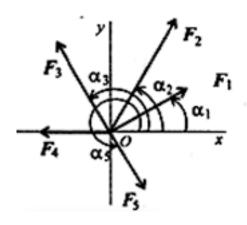
# Вариант 1

| №     | Условие задач                                                                             | ответы              | No  |
|-------|-------------------------------------------------------------------------------------------|---------------------|-----|
| задач |                                                                                           | Olbeibi             | 342 |
|       | Как измениться мощность на выходном валу<br>передачи, если число зубьев второго колеса z2 | увеличится в 2 раза | 1   |
|       | увеличится в 2 раза?                                                                      | уменьшится в 2 раза | 2   |
| 1     |                                                                                           | не изменится        | 3   |
|       |                                                                                           | увеличится в 4 раза | 4   |
|       | На изображенной схеме привода редуктора<br>является                                       | коническим          | 5   |
|       |                                                                                           | червячным           | 6   |
| 2     |                                                                                           | планетарным         | 7   |
|       |                                                                                           | волновым            | 8   |
|       | На рисунке изображен редуктор с<br>передачей                                              | волновой            | 9   |
|       |                                                                                           | червячной           | 10  |
| 3     |                                                                                           | конической          | 11  |
|       |                                                                                           | цилиндрической      | 12  |

| Оценка | Показатели оценки                      |
|--------|----------------------------------------|
| 5      | Даны правильные ответы на все вопросы. |
| 4      | Даны правильные ответы на два вопроса. |
| 3      | Дан правильный ответ на первый вопрос  |

# Задание №5

Дать ответы на контрольные вопросы:


- 1. Суть принципа Даламбера.
- 2. Дать определение об импульсе силы.

- 3. Какие параметры рассчитываются при поступательном движении твердого тела.
- 4. Какие параметры рассчитываются при вращательном движении твердого тела.
- 5. Какие параметры рассчитываются при сложном движении точки.
- 6. Какие параметры рассчитываются при сложном движении твердого тела.
- 7. Как определяется работа постоянной силы при прямолинейном движении.
- 8. Теорема об изменении количества движения.
- 9. Теорема об изменении кинетической энергии.

10. Основное уравнение динамики твердого тела при вращательном движении.

| Оценка | Показатели оценки                                                                            |
|--------|----------------------------------------------------------------------------------------------|
| 5      | Даны полные ответы на все контрольные вопросы.                                               |
| 4      | Даны неполные ответы на все контрольные вопросы или полные ответы на 7 контрольных вопросов. |
| 3      | Даны неполные ответы на 7 контрольных вопросов или полные ответы на 5 контрольных вопросов.  |

- 1.Спроецировать силы относительно осей.
- 2.Определить равнодействующую: геометрическим способом; аналитическим способом.



| Оценка | Показатели оценки                                                                  |
|--------|------------------------------------------------------------------------------------|
| 5      | Спроецированы все силы относительно осей. Определина равнодействующая 2 способами. |

| 4 | Спроецированы все силы относительно осей. Определина равнодействующая. |
|---|------------------------------------------------------------------------|
| 3 | Спроецированы все силы относительно осей.                              |

| №<br>п.п | Задание                                                                                                                | Ответы                                                                      | Код<br>ответа |
|----------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------|
| 1        | Определить размеры квадратного поперечного сечения при $[\sigma] = 160 M\Pi a$ ,                                       | a = 56 mm                                                                   | 1             |
|          | $q = 2 \cdot 10^3  H_M$ , $F = 4 \cdot 10^3 H$ ,                                                                       | a = 226 mm                                                                  | 2             |
|          | $l_1 = l_2 = l_3 = 3M.$                                                                                                | a = 107,4  MM                                                               |               |
|          |                                                                                                                        |                                                                             | 3             |
|          | 4 2 3                                                                                                                  | a = 23,5  MM                                                                | 4             |
| 2        | Подберите размеры поперечного                                                                                          | <b>№</b> 10                                                                 | 5             |
|          | сечения балки в виде швеллера. Максимальный изгибающий момент 15 кН·м; допускаемое напряжение материала балки 160 МПа. | № 22                                                                        | 6             |
|          |                                                                                                                        | № 18                                                                        | 7             |
|          |                                                                                                                        | №33                                                                         | 8             |
| 3        | Чему равен M <sub>и</sub> в поперечном сечении                                                                         | Отношению внешних моментов                                                  | 9             |
|          | бруса?                                                                                                                 | Разности внешних моментов                                                   | 10            |
|          |                                                                                                                        | Геометрической сумме моментов                                               | 11            |
|          |                                                                                                                        | Алгебраической сумме внешних моментов, приложенных к отсеченной части бруса | 12            |

| Оценка | Показатели оценки                                        |
|--------|----------------------------------------------------------|
| 5      | Даны правильные ответы на 3 вопроса теста.               |
| 4      | Даны правильные ответы на 2 вопроса теста.               |
| 3      | Дан правильный ответ на один теоретический вопрос теста. |

| №   | риант 1                                                                                             | 1                                                                                       | Ver        |
|-----|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------|
| Л.П | Задание                                                                                             | Ответы                                                                                  | Код ответа |
| 1   | Представлена диаграмма растяжения<br>материала. Назвать участок упругих                             | OA                                                                                      | 1          |
|     | деформаций.<br>*F, кн                                                                               | AB                                                                                      | 2          |
|     | B.C.                                                                                                | BC                                                                                      | 3          |
|     | о Д. мм Рисунок 3                                                                                   | OF                                                                                      | 4          |
| 2   | Какой вид деформации называется<br>растяжением-сжатием?                                             | Если возникает ВСФ $-M_y$<br>(изгибающий момент<br>относительно оси $y$ )               | 5          |
|     |                                                                                                     | Если возникает ВСФ – $Q_y$<br>(поперечная сила)                                         | 6          |
|     |                                                                                                     | Если возникает $BC\Phi - N_x$<br>(продольная сила)                                      | 7          |
|     |                                                                                                     | Если возникает ВСФ – $M_{z}$<br>(крутящий момент)                                       | 8          |
| 3   | По какой формуле определяется<br>площадь поперечного сечения при<br>деформации растяжением-сжатием? | $A_{p(c\kappa)} \ge \frac{N}{[\sigma]_{p(c\kappa)}}$                                    | 9          |
|     | деформации растяжением сжатием:                                                                     | $A_{cp} = \frac{Q}{[\tau]_{cp}}$                                                        | 10         |
|     |                                                                                                     | $A_{p(c\kappa)} \le \frac{N}{[\sigma]_{p(c\kappa)}}$ $A_{c\omega} = \frac{Q}{[\sigma]}$ | 11         |
|     |                                                                                                     | $A_{c_{M}} = \frac{Q}{[\sigma]_{c_{M}}}$                                                | 12         |

| Оценка | Показатели оценки                          |
|--------|--------------------------------------------|
| 5      | Даны правильные ответы на 3 вопроса теста. |
| 4      | Даны правильные ответы на 2 вопроса теста. |
| 3      | Дан правильный ответ на 1 вопрос теста.    |

#### Вариант 1

| Ne<br>n.n | Задание                                                                | Ответы                    | Код |
|-----------|------------------------------------------------------------------------|---------------------------|-----|
| 1         | Выбрать этвору поперечной силы для                                     | A                         | 1   |
|           | изображенной балки                                                     | Б                         | 2   |
|           |                                                                        | В                         | 3   |
|           |                                                                        | Г                         | 4   |
| 2         | Определить величину поперечной силы                                    | 39 ĸH                     | 5   |
|           | В сечении 1-1<br>15 мм 12 мм 42 мм 160 мм                              | 15 ĸH                     | 6   |
|           | 11                                                                     | 27 ĸH                     | 7   |
|           | 20 siller 1                                                            | 42 ĸH                     | 8   |
| 3         | Какой изгиб называется чистым?                                         | Если возникает Мя, Q      | 9   |
|           |                                                                        | Если возникает Q          | 10  |
|           |                                                                        | Если возникает Ми         | 11  |
|           |                                                                        | Если возникает N          | 12  |
| 4         | Определить изгибающий момент в<br>сечении 3-3 на расстоянии z;=6,5 м., | - 55 кН∙м                 | 13  |
|           | еслит:=15 кН-м; т2=28 кН-м; F1=20<br>кН; F2=30 кН.                     | -30 кН-м                  | 14  |
|           |                                                                        | - 25 кН⋅м                 | 15  |
|           | 2 m 2 m 3 m 3 m                                                        | + 10 KH-M                 | 16  |
| 5         | Когда изгибающий момент считается                                      | Если изгибает балку       | 17  |
|           | отрицательным?                                                         | выпуклостью вверх         | 17  |
|           |                                                                        | Если вращает балку против | 18  |
|           |                                                                        | часовой стрелки           | 10  |
|           |                                                                        | Если вращает балку до     | 19  |
|           |                                                                        | часовой стрелки           |     |
|           |                                                                        | Если изгибает балку       | 20  |
|           |                                                                        | выпуклостью вниз          | 2.4 |

| Оценка | Показатели оценки                                                             |
|--------|-------------------------------------------------------------------------------|
| 5      | Даны правильные ответы на все задания теста.                                  |
| 4      | Даны правильные ответы на 3 теоретических вопроса и решена одна задача теста. |
| 3      | Даны правильные ответы на 3 теоретических вопроса.                            |

#### Задание №10

**Задача 1:** Для шасси самолета провести проверка на устойчивость штока, если внутренний диаметр цилиндра du=126 мм, изгибающий момент Mx=371,25 к $H\cdot м$ , материал цилиндра – сталь  $30X\Gamma CA$ , длина штока 1,1 м.

Задача 2: Для шасси самолета провести проверка подкоса на устойчивость, если для нижней части

подкоса внешний диаметр Dн=72 мм и внутренний диаметр dн=56 мм.

| Оценка | Показатели оценки                                                     |
|--------|-----------------------------------------------------------------------|
| 5      | Правильно решены две задачи.                                          |
| 4      | Верно решена одна задача, а во второй допущены математические ошибки. |
| 3      | Решена одна задача, допущены математические ошибки.                   |

## Перечень практических заданий: Задание №1

Контрольные вопросы:

- 1. Аксиомы статики.
- 2. Система сходящихся сил.
- 3. Проекция силы на ось, правило знаков.
- 4. Геометрическое условие равновесия плоской системы сходящихся сил.

5. Уравнения равновесия плоской системы сходящихся сил.

| Оценка | Показатели оценки                                                                           |
|--------|---------------------------------------------------------------------------------------------|
| 5      | Даны полные ответы на все контрольные вопросы.                                              |
| 4      | Даны неполные ответы на все контрольные вопросы или полные ответы на 4 контрольных вопроса. |
| 3      | Даны неполные ответы на 3 контрольных вопроса или полные ответы на 2 контрольных вопроса.   |

#### Задание №2

#### Вариант 1

| No  | Задание                                                                                                   | Ответы             | Код    |
|-----|-----------------------------------------------------------------------------------------------------------|--------------------|--------|
| п.п |                                                                                                           |                    | ответа |
|     | С помощью метода сечений определите величину внутреннего силового фактора в сечении 1-1 и вид нагружения: | 36 кН – растяжение | 1      |

|   | Рисунок 1.                                                                                                               | 16 кН – растяжение<br>20 кН – растяжение | 3  |
|---|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----|
|   | They now 1.                                                                                                              | -36 кН – сжатие                          | 4  |
| 2 | Для бруса,                                                                                                               | 70 кН                                    | 5  |
|   | изображенного на схеме                                                                                                   | 130 кН                                   | 6  |
|   | (рисунок 2), рассчитать                                                                                                  | 110 кН                                   | 7  |
|   | наибольшую продольную силу, возникшую в поперечном сечении.                                                              | 200 кН                                   | 8  |
| 3 | Стержни I и II                                                                                                           | 800 мм2                                  | 9  |
|   | соединены штифтом III                                                                                                    | 628 мм2                                  | 10 |
|   | и нагружены                                                                                                              | 960 мм2                                  | 11 |
|   | растягивающими силами. Рассчитать величину площади среза штифта.                                                         | 1256 мм2                                 | 12 |
| 4 | Выбрать                                                                                                                  | A                                        | 13 |
|   | соответствующую                                                                                                          | Б                                        | 14 |
|   | эпюру продольных сил                                                                                                     | В                                        | 15 |
|   | в поперечных сечениях бруса.                                                                                             | Γ                                        | 16 |
|   | Рисунок 2                                                                                                                |                                          |    |
| 5 | Определить                                                                                                               | 0,42 мм                                  | 17 |
|   | перемещение                                                                                                              | 0,22 мм                                  | 18 |
|   | свободного конца бруса                                                                                                   | 0,62 мм                                  | 19 |
|   | (рисунок 2). Если известны длины участков бруса: <i>l1</i> =0,4 м; <i>l2</i> =0,6 м; <i>l3</i> =0,4 м; <i>l4</i> =0,2 м. | 0,66 мм                                  | 20 |

| Оценка | Показатели оценки                                                                  |
|--------|------------------------------------------------------------------------------------|
| 5      | Решены правильно все задания теста.                                                |
| 4      | Решены правильно четыре задания теста, допускаются небольшие неточности в решении. |
| 3      | Решены правильно три задания теста, допускаются небольшие неточности в решении.    |

| Вариант 1                                                |         |
|----------------------------------------------------------|---------|
| Вопросы                                                  | Решение |
| 1.Определить эквивалентный момент по                     |         |
| гипотезе наибольших касательных                          |         |
| напряжений для упрощенного проверочного                  |         |
| расчета на усталость:                                    |         |
| 300000 Ma. H-M                                           |         |
| 2. Расшифровать условное обозначение подшипника 36012 E. |         |
| 3. При перегрузке изображенной на рисунке                |         |
| предохранительной муфты с разрушающимся                  |         |
| элементом происходит                                     |         |
|                                                          |         |

| Оценка | Показатели оценки              |
|--------|--------------------------------|
| 5      | Правильно решены все задания.  |
| 4      | Правильно решено два задания.  |
| 3      | Правильно решено одно задание. |

## Задание №4

Из расчета на прочность сварного шва определить допускаемую нагрузку на соединение, если сварка ручная; электрод Э50; допускаемое напряжение для металла 120 МПа; нагрузка постоянная.

| Оценка | Показатели оценки                                                          |
|--------|----------------------------------------------------------------------------|
| 5      | Верно решена задача.                                                       |
| 4      | Верно составлены уравнения, но допущены математические ошибки при решении. |
| 3      | Допущены ошибки при составлении уравнений.                                 |

# Вариант 1

| №<br>задач | Условие задач                                                                                | ответы                | №  |
|------------|----------------------------------------------------------------------------------------------|-----------------------|----|
|            | Определить общее передаточное число                                                          | 4                     | 1  |
| 1          | коническо-цилиндрического редуктора, если                                                    | 6                     | 2  |
| •          | d <sub>1</sub> =50 мм; d <sub>2</sub> =200 мм; d <sub>3</sub> =35 мм; d <sub>4</sub> =70 мм. | 8                     | 3  |
|            |                                                                                              | 10                    | 4  |
|            | По какой формуле определяется передаточное<br>число для ременной передачи?                   | $u = \frac{z_2}{z_1}$ | 5  |
| 2          |                                                                                              | $u = \frac{d_2}{d_1}$ | 6  |
|            |                                                                                              | $u = \frac{Z_1}{Z_2}$ | 7  |
|            |                                                                                              | $u = d_1 + d_2$       | 8  |
|            | Определить передаточное число если z <sub>1</sub> =; z <sub>2</sub> =80                      | U=80, планетарная     | 9  |
| 3          | мм.<br>Для какой передачи определили передаточное<br>отношение?                              | U=81, зубчатая        | 10 |
|            |                                                                                              | U=0,0125, ременная    | 11 |
|            |                                                                                              | U=80, червячная       | 12 |

| Оценка | Показатели оценки                                 |
|--------|---------------------------------------------------|
| 5      | Даны правильные ответы на все вопросы.            |
| 4      | Даны правильные ответы на два вопроса.            |
| 3      | Дан правильный ответ на первый или третий вопрос. |

#### Задание №6

Определить время разбега самолета t по влетно-посадочной полосе (ВПП) при взлете и дистанцию разбега S при взлете если известны: m — масса самолета; P — сила тяги двигателей; Vomp — скорость отрыва от ВПП. Самолет совершает равноускоренное движение.

| №        | m rr             | <i>P</i> , H  | V var/u                        |
|----------|------------------|---------------|--------------------------------|
| варианта | $m$ , K $\Gamma$ | <u>r</u> , 11 | <i>V<sub>отр.</sub></i> , км/ч |
| 1        | 22'500           | 48'800        | 250                            |
| 2        | 12'450           | 36'400        | 320                            |
| 3        | 21'600           | 32'600        | 220                            |
| 4        | 54'800           | 154'000       | 240                            |
| 5        | 83'400           | 312'000       | 220                            |
| 6        | 380'400          | 695'000       | 230                            |
| 7        | 252'000          | 475'000       | 250                            |
| 8        | 281'400          | 521'000       | 310                            |
| 9        | 354'000          | 813'000       | 270                            |
| 10       | 185'000          | 441'000       | 210                            |
| 11       | 220'500          | 486'000       | 180                            |
| 12       | 39'800           | 146'000       | 210                            |
| 13       | 48'900           | 152'000       | 190                            |
| 14       | 5'580            | 11'500        | 230                            |
| 15       | 22'300           | 61'700        | 300                            |
| 16       | 24'300           | 126'000       | 260                            |
| 17       | 31'600           | 216'000       | 220                            |
| 18       | 35'800           | 346'000       | 240                            |
| 19       | 17'400           | 234'000       | 245                            |
| 20       | 23'600           | 257'000       | 215                            |
| 21       | 43'500           | 195'000       | 220                            |
| 22       | 15'600           | 45'000        | 205                            |
| 23       | 19'200           | 76'500        | 190                            |
| 24       | 125'200          | 856'000       | 175                            |
| 25       | 280'000          | 1'464'000     | 230                            |

| Оценка | Показатели оценки                                                            |
|--------|------------------------------------------------------------------------------|
| 5      | 1. Верно выполнен рисунок с указанием всех действующих нагрузок на самолет.  |
|        | 2. Верно составлены уравнения для решения.                                   |
|        | 3. Определены значения искомых параметров, исходя из составленных уравнений. |
|        | 4. Подробно объяснены параметры, входящие в уравнения и ход решения.         |
| 4      | 1. Верно выполнен рисунок с указанием всех действующих нагрузок на самолет.  |
|        | 2. Верно составлены уравнения для решения.                                   |
|        | 3. Допущены ошибки при определении значения искомых параметров.              |
|        |                                                                              |

- 1. Верно выполнен рисунок с указанием всех действующих нагрузок на самолет.
  - 2. Допущены ошибки при составлении уравнений для решения задачи.
  - 3. Допущены ошибки при определении значения искомых параметров.

ы Вариант 1

| Вопросы                                                                                    | Ответы                                                                  | Код |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----|
| <ol> <li>Как называется изображенный заклепочный<br/>шов?</li> </ol>                       | Односрезный двухрядный с одно<br>накладкой шахматный                    | 1   |
| F P                                                                                        | Двухсрезный двухрядный встык с<br>одной накладкой                       | 2   |
|                                                                                            | Двухсрезный однорядный с двумя<br>накладками                            | 3   |
|                                                                                            | Односрезный двухрядный<br>внахлестку шахматный                          | 4   |
| 2. Какое соединение изображено на рисунке?                                                 | Шлицевое прямобочное с<br>центрированием по наружному<br>днаметру       | 1   |
|                                                                                            | Шлицевое прямобочное с<br>центрированием по внутреннему<br>диаметру     | 2   |
|                                                                                            | Шлицевое прямобочное с<br>центрированием по боковой<br>поверхности зуба | 3   |
|                                                                                            | Шлицевое эвольвентное                                                   | 4   |
| <ol> <li>Как следует подготовить кромки перед<br/>сваркой встык толщиной 25 мм?</li> </ol> | а                                                                       | 1   |
| Использовать приложение.                                                                   | б                                                                       | 2   |
|                                                                                            | 6                                                                       | 3   |
|                                                                                            | г                                                                       | 4   |

| Оценка | Показатели оценки                      |
|--------|----------------------------------------|
| 5      | Даны правильные ответы на три вопроса. |
| 4      | Даны правильные ответы на два вопроса. |
| 3      | Дан правильный ответ на один вопрос.   |

# Вариант 1

| №<br>задач | Условие задач                                                              | ответы                | №  |
|------------|----------------------------------------------------------------------------|-----------------------|----|
|            | Определить общее передаточное число                                        | 4                     | 1  |
| 1          | коническо-цилиндрического редуктора, если                                  | 6                     | 2  |
|            | $d_1$ =50 mm; $d_2$ =200 mm; $d_3$ =35 mm; $d_4$ =70 mm.                   | 8                     | 3  |
|            |                                                                            | 10                    | 4  |
|            | По какой формуле определяется передаточное<br>число для ременной передачи? | $u = \frac{z_2}{z_1}$ | 5  |
| 2          |                                                                            | $u = \frac{d_2}{d_1}$ | 6  |
|            |                                                                            | $u = \frac{z_1}{z_2}$ | 7  |
|            |                                                                            | $u = d_1 + d_2$       | 8  |
|            | Определить передаточное число если $z_1$ =; $z_2$ =80                      | U=80, планетарная     | 9  |
| 3          | мм.<br>Для какой передачи определили передаточное                          | U=81, зубчатая        | 10 |
|            |                                                                            | U=0,0125, ременная    | 11 |
|            | отношение?                                                                 | U=80, червячная       | 12 |

| Оценка | Показатели оценки                      |
|--------|----------------------------------------|
| 3      | Даны правильные ответы на все вопросы. |
| 4      | Даны правильные ответы на два вопроса. |
| 5      | Дан правильный ответ на первый вопрос. |

Вариант 1

| Бариант 1                                |        |
|------------------------------------------|--------|
| Вопросы                                  | Ответы |
| 1. На рисунке изображена в сборе и в     |        |
| разобранном состоянии муфта,             |        |
| относящаяся к                            |        |
|                                          |        |
| Возможность сборки независимо            |        |
| изготовленных деталей без дополнительной |        |
| обработки обеспечивается                 |        |
|                                          |        |
| 3. Данный подшипник 36012 Е,             |        |
| устанавливается на вал диаметром         |        |
|                                          |        |

| Оценка | Показатели оценки                      |
|--------|----------------------------------------|
| 5      | Даны правильные ответы на все вопросы  |
| 4      | Даны правильные ответы на два вопроса. |
| 3      | Дан правильный ответ на один вопрос.   |

## Задание №10

Определить угл закручивания и касательные напряжения в поперечном сечении круглого бруса.

 $M_1=1.5 \text{ kH·m}$   $M_2=5.5 \text{ kH·m}$   $M_4=1.8 \text{$ 

| Оценка | Показатели оценки                                              |
|--------|----------------------------------------------------------------|
| 5      | -Определены реактивные моменты, возникающий в жесткой заделке. |
|        | -Выполены эпюры крутящих моментов.                             |
|        | -Определен диаметр вала.                                       |
|        | -Определен угол закручивания.                                  |
|        | -Построены эпюры углов закручивания.                           |
| 4      | -Определены реактивные моменты, возникающий в жесткой заделке. |
|        | -Выполены эпюры крутящих моментов.                             |
|        | -Определен диаметр вала.                                       |
|        | -Определен угол закручивания.                                  |
| 3      | -Определены реактивные моменты, возникающий в жесткой заделке. |
|        | -Выполены эпюры крутящих моментов.                             |
|        | -Определен диаметр вала.                                       |