

Министерство образования Иркутской области Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Иркутский авиационный техникум»

УТВЕРЖДАЮ

Директор

ГБНОУИО «ИАТ»

//Якубовский А.Н.

«30» мая 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

ОП.08 Аэродинамика

специальности

24.02.01 Производство летательных аппаратов

Рассмотрена цикловой комиссией С протокол №9 от 15.04.2024 г.

№	Разработчик ФИО
1	Захаров Роман Николаевич

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Область применения фонда оценочных средств (ФОС)

ФОС по дисциплине является частью программы подготовки специалистов среднего звена по специальности 24.02.01 Производство летательных аппаратов

1.2. Место дисциплины в структуре ППССЗ:

ОП.00 Общепрофессиональный цикл.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины

Результаты	№	Формируемый результат
освоения	результата	
дисциплины		
Знать	1.1	принцип возникновения аэродинамических явлений
	1.2	понятия положения летательного аппарата в пространстве
	1.3	правила расчёта движения тел в аэродинамике
	1.4	классификацию воздушного потока
	1.5	способы управления пограничным слоем
	1.6	явления, возникающие при переходе на околозвуковые и сверхзвуковые скорости
	1.7	классификацию аэродинамических профилей
	1.8	виды форм крыла летательного аппарата
	1.9	основные параметры фюзеляжей и корпусов
	1.10	понятие полной аэродинамической силы
	1.11	факторы, влияющие на подъемную силу
	1.12	факторы, влияющие на аэродинамическое
		сопротивление
	1.13	понятие аэродинамического качества
	1.14	принцип работы управляющих поверхностей
	1.15	понятие механизации крыла
	1.16	классификацию поверхностей механизации крыла
	1.17	понятие воздушного винта
	1.18	характеристики воздушных винтов

	1.19	силы, действующие на воздушный винт
	1.20	условия для выполнения горизонтального полета
	1.21	алгоритм определения удельного расхода топлива
	1.22	силы и моменты, влияющие на устойчивость и управляемость летательного аппарата
	1.23	способы обеспечения устойчивости
	1.24	способы обеспечения управляемости
	1.25	маневры, выполняемые летательными аппаратами
	1.26	понятие скачка уплотнения
Уметь	2.1	рассчитывать давление и скорость потока газа
	2.2	определять значимые явления воздушного потока
	2.3	определять значения критического числа маха в зависимости от скачков уплотнения
	2.4	рассчитывать геометрические параметры несущих поверхностей
	2.5	рассчитывать геометрические параметры корпусов летательных аппаратов
	2.6	строить графики зависимости аэродинамических сил от параметров полета
	2.7	строить поляры для нахождения аэродинамического качества
	2.8	определять моменты и силы на управляющие поверхности
	2.9	рассчитывать графики аэродинамических сил и поляры при работе механизации
	2.10	рассчитывать геометрические параметры воздушного винта
	2.11	определять силы, действующие на воздушный винт
	2.12	рассчитывать режим горизонтального полета
	2.13	определять компоновку самолета для наилучшей балансировки
	2.14	анализировать характеристики летательных аппаратов для определения предельных возможностей

1.4. Формируемые компетенции:

ОК.1 Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам

OK.3 Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях

ОК.6 Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных российских духовно-нравственных ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения ПК.3.3 Производить проектировочные расчеты деталей, узлов, агрегатов, кинематических схем характеристик летательных аппаратов

2. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

2.1 Текущий контроль (ТК) № 1 (40 минут)

Тема занятия: 1.1.5.Влияние газовой среды на тела.

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа

Дидактическая единица: 1.1 принцип возникновения аэродинамических явлений Занятие(-я):

1.1.1.Основные сведения об аэродинамике. Краткие сведения об атмосфере земли. Параметры воздуха.

Задание №1 (10 минут)

Напишите 5 основных параметров воздуха с их описанием и единицами измерений.

Оценка	Показатели оценки
5	Записаны 5 параметров с их кратким описанием и единицами измерения.
4	Записаны 4 параметра с их кратким описанием и единицами измерения.
3	Записаны 3 параметра с их кратким описанием и единицами измерения.

Дидактическая единица: 1.2 понятия положения летательного аппарата в пространстве

Занятие(-я):

1.1.3. Понятия угла атаки, крена, тангажа, рыскания.

Задание №1 (10 минут)

Сформулируйте определения понятий "Рыскание", "Крен", "Тангаж" и "Угол атаки".

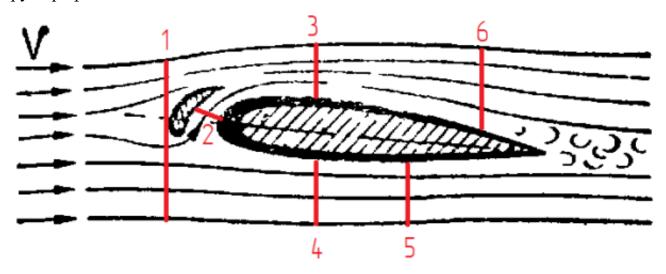
Оценка	Показатели оценки
5	Сформулированы 4 определения с указанием родового понятия и видовых отличий.
4	Сформулированы 3 определения с указанием родового понятия и видовых отличий.
3	Сформулированы 2 определения с указанием родового понятия и видовых отличий.

Дидактическая единица: 1.3 правила расчёта движения тел в аэродинамике **Занятие(-я):**

1.1.2.Основные уравнения движения жидкостей и газов. Закон Бернулли. Влияние закона Бернулли на образование подъемной силы.

Задание №1 (10 минут)

Распишите энергетические составляющие уравнения Бернулли с описанием их действия в потоке.


Оценка	Показатели оценки
5	Даны все три энергетические составляющие уравнения и для всех трех имеются описания их действия.
	трех имеются описания их действия.
4	Даны все три энергетические составляющие уравнения и для двух имеются описания их действия.
	Aby it initial to a continuous in Action billion
3	Даны все три энергетические составляющие уравнения.

Дидактическая единица: 2.1 рассчитывать давление и скорость потока газа **Занятие(-я):**

1.1.4. Проведение опыта по изучению закона Бернулли.

Задание №1 (10 минут)

Определите зависимость давлений и скорости потока в разных сечениях потока вокруг профиля относительно "Сечение 6".

Оценка	Показатели оценки
5	Верно даны значения V_i (скорости) и P_i (давления) относительно V_6 и P_6 для 5 сечений.
4	Верно даны значения V_i (скорости) и P_i (давления) относительно V_6 и P_6 для 4 сечений.
3	Верно даны значения V_i (скорости) и P_i (давления) относительно V_6 и P_6 для 3 сечений.

2.2 Текущий контроль (ТК) № 2 (40 минут)

Тема занятия: 1.2.5.Влияние спутного следа на полет. **Метод и форма контроля:** Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа

Дидактическая единица: 1.4 классификацию воздушного потока

Занятие(-я):

1.2.1.Основные допущения в аэродинамике.

1.2.2.Особенности обтекания тел реальной (вязкой) средой.

Задание №1 (15 минут)

Запишите полную классификацию воздушного потока по его основным составляющим.

Оценка	Показатели оценки
5	Записаны все виды потока по движению, нахождению в нем тела, и структуре потока в аэродинамике.
4	Записаны все виды потока по нахождению в нем тела, и структуре потока в аэродинамике.
3	Записаны все виды потока по структуре потока в аэродинамике.

Дидактическая единица: 1.5 способы управления пограничным слоем **Занятие(-я):**

1.2.3. Переход ламинарного пограничного слоя в турбулентный. Способы управления точкой перехода.

Задание №1 (10 минут)

Запишите развернутую классификацию методов управления точкой перехода ламинарного пограничного слоя в турбулентный.

Оценка	Показатели оценки
5	Записана развернутая классификация трех методов.
4	Записана развернутая классификация двух методов.
3	Записана развернутая классификация одного метода.

Дидактическая единица: 2.2 определять значимые явления воздушного потока Занятие(-я):

1.2.4.Определение точки перехода ламинарного пограничного слоя в турбулентный на образцах обтекаемых тел.

Задание №1 (15 минут)

Выполните расчет точки перехода ламинарного пограничного слоя в турбулентный

реального профиля самолета.

Оценка	Показатели оценки
5	Определен характер обтекания. Учтены элементы управления точкой перехода. Верно выполнен расчет.
4	Определен характер обтекания. Верно выполнен расчет.
3	Верно выполнен расчет без учета сопутствующих параметров.

2.3 Текущий контроль (ТК) № 3 (40 минут)

Тема занятия: 1.2.11.Волновой кризис.

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа

Дидактическая единица: 1.6 явления, возникающие при переходе на

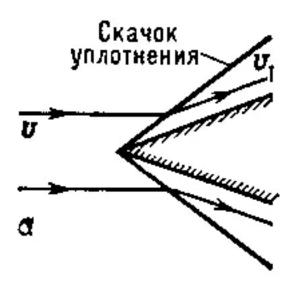
околозвуковые и сверхзвуковые скорости

Занятие(-я):

1.2.7.Особенности обтекания тел сжимаемой средой на больших околозвуковых и сверхзвуковых скоростях.

Задание №1 (15 минут)

Перечислите и объясните явления, которые возникают на околозвуковых и сверхзвуковых скоростях.


Оценка	Показатели оценки
5	Перечислены и объяснены 4 явления.
4	Перечислены и объяснены 3 явления.
3	Перечислены и объяснены 2 явления.

Дидактическая единица: 1.26 понятие скачка уплотнения **Занятие(-я):**

1.2.8. Физическая сущность образования скачков уплотнения.

Задание №1 (10 минут)

Опишите вид представленного скачка уплотнения и запишите зависимости V и V_1 по траектории A от числа Maxa.

Оценка	Показатели оценки
5	Описан вид скачка уплотнения, определены зависимости скоростей по траектории со значениями относительно числа Маха.
4	Описан вид скачка уплотнения, определены зависимости скоростей по траектории без привязки к числу Маха.
3	Описан вид скачка уплотнения.

Дидактическая единица: 2.3 определять значения критического числа маха в зависимости от скачков уплотнения

Занятие(-я):

- 1.2.9.Изучение действия скачков уплотнения на полет самолета.
- 1.2.10. Выявление возникающих скачков уплотнения на сверхзвуковых летательных аппаратах.

Задание №1 (15 минут)

Определите вид и угол скачка уплотнения, возникающего: на носу фюзеляжа, на передней кромке крыла, на передней кромке стабилизатора.

Оценка	Показатели оценки
5	Определены вид и угол скачков уплотнения по всем трем частям самолета.
4	Определены вид и угол скачков уплотнения по двум частям самолета.
3	Определены вид и угол скачков уплотнения по одной части самолета.

2.4 Текущий контроль (ТК) № 4 (40 минут)

Тема занятия: 2.1.5. Явления, возникающие на разных режимах полета в зависимости от формы крыла.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Письменная практическая работа

Дидактическая единица: 1.7 классификацию аэродинамических профилей **Занятие(-я):**

2.1.1. Геометрические характеристики профиля крыла. Виды профилей крыла и их применение.

Задание №1 (10 минут)

По индивидуальной схеме самолета определите аэродинамические профиля несущих поверхностей и опишите их работу в самолете.

Оценка	Показатели оценки
5	Верно определены виды аэродинамических профилей крыла, горизонтального оперения и вертикального оперения. Каждый профиль содержит описание своей работы в самолете.
4	Верно определены виды аэродинамических профилей крыла, горизонтального оперения и вертикального оперения. Два любых профиля содержат описание своей работы в самолете.
3	Верно определены виды аэродинамических профилей крыла, горизонтального оперения и вертикального оперения. Один любой профиль содержит описание своей работы в самолете.

Дидактическая единица: 1.8 виды форм крыла летательного аппарата **Занятие(-я):**

- 2.1.2. Геометрические параметры формы крыла в плане. Поперечные параметры крыла.
- 2.1.3.Влияние геометрических параметров на скорость полета.

Задание №1 (10 минут)

По индивидуальной схеме самолета определите:

- 1. форму крыла и горизонтального оперения в плане,
- 2. расположение крыла спереди,
- 3. замерить угол поперечного V крыла и горизонтального оперения.

Оценка	Показатели оценки

5	Определены форма крыла и горизонтального оперения в плане,
	расположение крыла спереди и угол поперечного V крыла и
	горизонтального оперения.
4	Определены форма только крыла в плане, расположение крыла
	спереди и угол поперечного V только крыла.
3	Определены форма только крыла в плане и угол поперечного V
	только крыла.

Дидактическая единица: 2.4 рассчитывать геометрические параметры несущих поверхностей

Занятие(-я):

2.1.4. Расчёт геометрических параметров крыла самолета на основе схем и чертежей.

Задание №1 (20 минут)

По схеме самолета рассчитайте: размах крыла, площадь крыла, среднюю аэродинамическую хорду, угол стреловидности, удлинение крыла, сужение крыла, максимальную толщину профиля в САХ и максимальную кривизну профиля в САХ.

Оценка	Показатели оценки
5	Верно определены 7 из 8 параметров.
4	Верно определены 6 из 8 параметров.
3	Верно определены 4 из 8 параметров.

2.5 Текущий контроль (ТК) № 5 (30 минут)

Тема занятия: 2.2.3.Задачи, выполняемые разными формами фюзеляжей.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Письменная практическая работа

Дидактическая единица: 1.9 основные параметры фюзеляжей и корпусов **Занятие(-я):**

2.2.1. Корпуса летательного аппарата. Внешние формы корпусов.

Задание №1 (15 минут)

Определите внешнею форму фюзеляжа в боковой проекции и 5 сечений отсеков.

Оценка	Показатели оценки
5	Верно определена форма фюзеляжа в боковой проекции и 5 сечений отсеков.
	Верно определена форма фюзеляжа в боковой проекции и 3 сечений отсеков.

Верно определена только форма фюзеляжа в боковой проекции.

Дидактическая единица: 2.5 рассчитывать геометрические параметры корпусов летательных аппаратов

Занятие(-я):

2.2.2. Расчёт геометрических параметров корпусов летательного аппарата.

Задание №1 (15 минут)

Рассчитайте по схеме самолета длину основных частей фюзеляжа, удлинение носовой части, удлинение хвостовой части.

Оценка	Показатели оценки
5	Верно определены все параметры.
	Определены длины основных частей самолета и удлинение носовой или хвостовой части.
3	Определены только длины основных частей самолета.

2.6 Текущий контроль (ТК) № 6 (35 минут)

Тема занятия: 3.1.9.Построение графика зависимости лобового сопротивления от угла атаки.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Письменная практическая работа

Дидактическая единица: 1.11 факторы, влияющие на подъемную силу

Занятие(-я):

- 3.1.3. Подъемная сила крыла.
- 3.1.4. Графики зависимости подъемной силы от угла атаки.

Задание №1 (10 минут)

Определите значения подъемной силы аэродинамического профиля на разных ключевых углах атаки.

Оценка	Показатели оценки
5	Рассчитаны значения подъемной силы на 5 разных углах атаки.
4	Рассчитаны значения подъемной силы на 4 разных углах атаки.
3	Рассчитаны значения подъемной силы на 3 разных углах атаки.

Дидактическая единица: 1.12 факторы, влияющие на аэродинамическое сопротивление

Занятие(-я):

3.1.6. Лобовое сопротивление летального аппарата.

- 3.1.7. Составляющие полного аэродинамического сопротивления.
- 3.1.8. Графики зависимости лобового сопротивления от угла атаки.

Задание №1 (10 минут)

Определите значения лобового сопротивления аэродинамического профиля на разных ключевых углах атаки.

Оценка	Показатели оценки
5	Рассчитаны значения лобового сопротивления на 5 разных углах атаки.
4	Рассчитаны значения лобового сопротивления на 4 разных углах атаки.
3	Рассчитаны значения лобового сопротивления на 3 разных углах атаки.

Дидактическая единица: 2.6 строить графики зависимости аэродинамических сил от параметров полета

Занятие(-я):

3.1.5. Расчет графиков зависимости подъемной силы от угла атаки в разных условиях.

Задание №1 (15 минут)

Построийте разные графики зависимости коэффициента подъемной силы и лобового сопротивления от угла атаки.

Оценка	Показатели оценки
5	Построены два графика. Оба графика выполнены в масштабе. Нанесены значения основных точек. Точки почти не отклонены от своих значений (в пределах коэффициента 0,9 от значения).
4	Построены два графика. Оба графика выполнены в масштабе. Нанесены значения основных точек. Точки слегка отклонены от своих значений (в пределах коэффициента 0,8 от значения).
3	Построены два графика. Оба графика выполнены в масштабе. Нанесены значения основных точек. Точки отклонены от своих значений (в пределах коэффициента 0,7 от значения).

2.7 Текущий контроль (ТК) № 7 (40 минут)

Тема занятия: 3.1.14. Расчёт аэродинамического качества по разным графикам.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Письменная практическая работа

Дидактическая единица: 1.13 понятие аэродинамического качества

Занятие(-я):

- 3.1.11. Аэродинамическое качество.
- 3.1.12.Поляра крыла. Способы построения. Анализ поляры.

Задание №1 (15 минут)

Рассчитайте значения аэродинамического качества для 6 углов атаки и определите наивыгоднейший угол атаки.

Оценка	Показатели оценки
5	Верно найдено аэродинамическое качество для 6 углов атаки. В выводе определен наивыгоднейший угол атаки или его диапазон.
4	Верно найдено аэродинамическое качество для 6 углов атаки. Не определен наивыгоднейший угол атаки или его диапазон.
3	Верно найдено аэродинамическое качество для 4 углов атаки. Не определен наивыгоднейший угол атаки или его диапазон.

Дидактическая единица: 1.10 понятие полной аэродинамической силы **Занятие(-я):**

- 3.1.1. Распределение давления по профилю крыла.
- 3.1.2. Понятие полной аэродинамической силы.

Задание №1 (10 минут)

Произведите сумму векторов давлений по профилю крыла для нахождения полной аэродинамической силы. Разбейте полную аэродинамическую силу на составляющие векторы по осям.

Оценка	Показатели оценки
5	Графически простроена сумма векторов. Нанесена полная аэродинамическая сила. Выполнено деление силы по осям.
4	Графически простроена сумма векторов. Нанесена полная аэродинамическая сила. Не выполнено деление силы по осям.
3	Графически простроена сумма векторов. Не нанесена полная аэродинамическая сила. Не выполнено деление силы по осям.

Дидактическая единица: 2.7 строить поляры для нахождения аэродинамического качества

Занятие(-я):

3.1.13. Построение поляры крыла по его графикам.

Задание №1 (15 минут)

По графикам зависимости Су и Сх от угла атаки постройте поляру крыла. Вычислите по графику аэродинамическое качество по двум случайным линиям.

Оценка	Показатели оценки
5	Верно построена поляра крыла. Рассчитано аэродинамическое качество для двух линий.
4	Верно построена поляра крыла. Рассчитано аэродинамическое качество для одной линии.
3	Верно построена поляра крыла. Не рассчитано аэродинамическое качество для линий.

2.8 Текущий контроль (ТК) № 8 (30 минут)

Тема занятия: 3.2.5.Определять распределение давлений по профилю с отклонением рулевых поверхностей.

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа

Дидактическая единица: 1.14 принцип работы управляющих поверхностей **Занятие(-я):**

- 3.2.1. Принцип отклонения траектории движения.
- 3.2.2.Классификация управляющих поверхностей по выполняемым маневрам.
- 3.2.3.Определение плеча работы элементов управления различных схем оперения.

Задание №1 (15 минут)

Перечислите все виды управляющих поверхностей, к чему они крепятся и как отклоняются.

Оценка	Показатели оценки
5	Перечислены управляющие поверхности, указаны части самолета, к которым они крепятся, описан принцип их отклонения в количестве 5 штук.
4	Перечислены управляющие поверхности, указаны части самолета, к которым они крепятся, описан принцип их отклонения в количестве 4 штук.
3	Перечислены управляющие поверхности, указаны части самолета, к которым они крепятся, описан принцип их отклонения в количестве 3 штук.

Дидактическая единица: 2.8 определять моменты и силы на управляющие поверхности

Занятие(-я):

3.2.4.Определение действующих сил при маневрировании самолета.

Задание №1 (15 минут)

Нанесите силы и моменты на часть оперения в разном положении для всех

представленных случаев.

Оценка	Показатели оценки
5	Для всех трех рисунков нанесены: подъемная сила, образующийся момент, вектор силы приложения усилия.
4	Для двух рисунков нанесены: подъемная сила, образующийся момент, вектор силы приложения усилия.
3	Для одного рисунка нанесены: подъемная сила, образующийся момент, вектор силы приложения усилия.

2.9 Текущий контроль (ТК) № 9 (40 минут)

Тема занятия: 3.2.10. Расчёт поляр самолета при работе механизации. **Метод и форма контроля:** Контрольная работа (Сравнение с аналогом)

Вид контроля: Письменная контрольная работа

Дидактическая единица: 1.15 понятие механизации крыла

Занятие(-я):

3.2.7. Управление подъемной силой. Механизация.

Задание №1 (15 минут)

Напишите точное определение понятию "Механизация" и укажите основные режимы полета, на которых может быть применена механизация самолета с объяснением изменения параметров.

Оценка	Показатели оценки
5	Написаны: понятие механизации, указаны три режима полета на которых применена механизация с объяснением их параметров.
4	Написаны: понятие механизации, указаны два режима полета на которых применена механизация с объяснением их параметров.
3	Написаны: понятие механизации, указан один режим полета на которых применена механизация с объяснением их параметров.

Дидактическая единица: 1.16 классификацию поверхностей механизации крыла **Занятие(-я):**

3.2.8. Поверхности механизации на самолете.

Задание №1 (10 минут)

По представленной схеме самолета определите все используемые типы механизации в нем и объясните их влияние на полет.

Оценка	Показатели оценки
5	Определена вся механизация и для всех поверхностей имеются пояснения их влияния на полет.
4	Определена вся механизация и для всех, кроме одной поверхности, имеются пояснения их влияния на полет.
3	Определена вся механизация и для только к одной поверхности имеются пояснения влияния на полет.

Дидактическая единица: 2.9 рассчитывать графики аэродинамических сил и поляры при работе механизации

Занятие(-я):

3.2.9.Изменения графиков зависимости от угла атаки и поляры при работе закрылков и предкрылков.

Задание №1 (15 минут)

Для одного самолета начертите графики зависимости Су и Сх от угла атаки при работе:

- 1. Только закрылков в горизонтальном полете;
- 2. Только предкрылков в горизонтальном полете;
- 3. Закрылков и интерцепторов на посадке;
- 4. Закрылков и предкрылков на взлетном режиме.

Оценка	Показатели оценки
5	Выполнены графики для всех 4 случаев.
4	Выполнены графики для только для 3 случаев.
3	Выполнены графики для только для 2 случаев.

2.10 Текущий контроль (ТК) № 10 (35 минут)

Тема занятия: 4.1.4.Скорости движения элементов лопасти. Изменяемый шаг винта.

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа

Дидактическая единица: 1.17 понятие воздушного винта

Занятие(-я):

4.1.1.Понятие воздушный винт. Виды воздушных винтов и их применение.

Задание №1 (15 минут)

Сформулируйте определение понятия "Воздушный вид".

Оценка	Показатели оценки
5	Представлено определение с родовым понятием и 4 видовыми отличиями.
4	Представлено определение с родовым понятием и 3 видовыми отличиями.
3	Представлено определение с родовым понятием и 2 видовыми отличиями.

Дидактическая единица: 1.18 характеристики воздушных винтов **Занятие(-я):**

4.1.2. Геометрические характеристики воздушного винта.

Задание №1 (10 минут)

Изобразите вращающийся воздушный винт со всеми его геометрическими характеристиками.

Оценка	Показатели оценки
5	Изображен воздушный винт сбоку и нанесены 5 геометрических параметров.
4	Изображен воздушный винт сбоку и нанесены 4 геометрических параметра.
3	Изображен воздушный винт сбоку и нанесены 3 геометрических параметра.

Дидактическая единица: 2.10 рассчитывать геометрические параметры воздушного винта

Занятие(-я):

4.1.3. Расчёт геометрии воздушного винта.

Задание №1 (10 минут)

Для самолета с воздушным винтом определите геометрический шаг, скольжение при двух разных углах установки лопасти винта.

Оценка	Показатели оценки
5	Все параметры рассчитаны верно для двух случаев.
4	Один случай рассчитан полностью верно, второй имеет ошибки
	при расчете шага или скольжения.
3	Рассчитан только один случай.

2.11 Текущий контроль (ТК) № 11 (30 минут)

Тема занятия: 4.2.3. Обобщение расчета характеристик воздушного винта.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Письменная практическая работа

Дидактическая единица: 1.19 силы, действующие на воздушный винт

Занятие(-я):

4.2.1. Аэродинамические силы винта.

Задание №1 (15 минут)

Выполните график зависимости тяги винта от скорости самолета. Определить максимальную скорость полета самолета на двух разных углах установки винта.

Оценка	Показатели оценки
5	Построен график зависимости тяги винта от скорости самолета. Определена максимальная скорость полета самолета на двух углах установки винта.
4	Построен график зависимости тяги винта от скорости самолета. Определена максимальная скорость полета самолета на одном угле установки винта.
3	Построен график зависимости тяги винта от скорости самолета. Не определена максимальная скорость полета самолета на разных углах установки винта.

Дидактическая единица: 2.11 определять силы, действующие на воздушный винт **Занятие(-я):**

4.2.2.Определение сил, действующих на воздушный винт.

Задание №1 (15 минут)

По схеме самолета определить силу тяги воздушного винта.

Оценка	Показатели оценки
5	Сила тяги определена верно с учетом лобового сопротивления и сопротивления вращения воздушного винта.
4	Сила тяги определена верно только с учетом лобового сопротивления или сопротивления вращения воздушного винта.
3	Сила тяги определена верно без учета лобового сопротивления и сопротивления вращения воздушного винта.

2.12 Текущий контроль (ТК) № 12 (45 минут)

Тема занятия: 5.1.4. Определение параметров полета самолета.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Письменная практическая работа

Дидактическая единица: 1.20 условия для выполнения горизонтального полета **Занятие(-я):**

5.1.1. Характеристики горизонтального полета. Влияние высоты на горизонтальный полет. Влияние угла атаки на горизонтальный полет.

Задание №1 (20 минут)

Рассчитайте скорости горизонтального полета для диапазона высот от 0 до 6000 выбрав 10 точек.

Оценка	Показатели оценки
5	Для 9 из 10 точек верно рассчитана скорость горизонтального
	полета.
4	Для 7 из 10 точек верно рассчитана скорость горизонтального
	полета.
3	Для 5 из 10 точек верно рассчитана скорость горизонтального
	полета.

Дидактическая единица: 1.21 алгоритм определения удельного расхода топлива **Занятие(-я):**

5.1.2. Наивыгоднейшие режимы полета. Расход топлива и продолжительность полета.

Задание №1 (10 минут)

Рассчитайте удельный расход топлива и продолжительность полета на крейсерском режиме полета для трех разных высот.

Оценка	Показатели оценки	
5	Для всех трех высот определены удельный расход топлива и продолжительность полета.	
4	Для двух высот определены удельный расход топлива и продолжительность полета.	
3	Для одной высоты определены удельный расход топлива и продолжительность полета.	

Дидактическая единица: 2.12 рассчитывать режим горизонтального полета **Занятие(-я):**

5.1.3. Расчёт режимов горизонтального полета.

Задание №1 (15 минут)

Постройте кривые Жуковского по тягам. Рассчитайте по ним первый и второй режим горизонтального полета.

Оценка	Показатели оценки	
5	Построена кривая Жуковского по тягам. Выполнены расчеты	
	первого и второго режима.	
4	Построена кривая Жуковского по тягам. Выполнены расчеты	
	первого или второго режима.	
3	Построена кривая Жуковского по тягам. Не выполнены расчеты	
	первого и второго режима.	

2.13 Текущий контроль (ТК) № 13 (40 минут)

Тема занятия: 5.2.7.Обобщение требований по устойчивости и управляемости.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Письменная практическая работа.

Дидактическая единица: 1.22 силы и моменты, влияющие на устойчивость и управляемость летательного аппарата

Занятие(-я):

- 5.2.1.Понятия балансировки, устойчивости и управляемости.
- 5.2.2. Условия равновесия и балансировки летательного аппарата.

Задание №1 (10 минут)

На схеме в трех проекциях нанесите силы и моменты, действующие на самолет при его балансировке.

Оценка	Показатели оценки	
5	На всех трех проекциях нанесены правильные направления векторов приложенных сил и моментов.	
4	Только на двух проекциях нанесены правильные направления векторов приложенных сил и моментов.	
3	Только на одной проекции нанесены правильные направления векторов приложенных сил и моментов.	

Дидактическая единица: 1.23 способы обеспечения устойчивости **Занятие(-я):**

- 5.2.3.Зависимость приложенных сил для устойчивости от компоновки летательного аппарата.
- 5.2.4. Балансировка и устойчивость самолета.

Задание №1 (10 минут)

По схеме самолета, приложенным к нему силам и центру масс, найдите:

- 1. Точку аэродинамического фокуса стабилизатора.
- 2. Силу, образующуюся на стабилизаторе.
- 3. Аэродинамический фокус самолета.

Оценка	Показатели оценки	
5	Для схемы самолета верно найдены три параметра.	
4	Для схемы самолета верно найдены два параметра.	
3	Для схемы самолета верно найден один параметр.	

Дидактическая единица: 1.24 способы обеспечения управляемости **Занятие(-я):**

5.2.5. Управляемость самолета.

Задание №1 (10 минут)

Выполните эскизы положения управляющих поверхностей самолета с приложенными силами для следующих базовых маневров:

- 1. Правый крен;
- 2. Кабрирование;
- 3. Разворот влево при кабрирующем моменте;
- 4. Смена курса вправо;
- 5. Стабилизация самолета с кабрирующим углом атаки.

Оценка	Показатели оценки	
5	Выполнены эскизы в полном объеме для 5 случаев.	
4	Выполнены эскизы в полном объеме для 4 случаев.	
3	Выполнены эскизы в полном объеме для 3 случаев.	

Дидактическая единица: 2.13 определять компоновку самолета для наилучшей балансировки

Занятие(-я):

5.2.6.Определение моментов по балансировке, устойчивости и управляемости.

Задание №1 (10 минут)

Рассчитайте параметры центровки летательного аппарата под три разных типа загрузки с учетом обеспечения устойчивости и управляемости.

Оценка	Показатели оценки	
5	Верно рассчитаны все три случая.	
4	Верно рассчитаны два случая.	
3	Верно рассчитан один случай.	

2.14 Текущий контроль (ТК) № 14 (35 минут)

Тема занятия: 5.3.3. Анализ влияния возможностей маневрирования на выполнение поставленных задач полета.

Метод и форма контроля: Контрольная работа (Опрос)

Вид контроля: Письменная контрольная работа

Дидактическая единица: 1.25 маневры, выполняемые летательными аппаратами

Занятие(-я):

5.3.1.Вираж, спираль и разворот самолета.

Задание №1 (15 минут)

Приведите полную классификацию пилотажа на самолете с видами и выполняемыми маневрами.

Оценка	Показатели оценки	
5	Приведена полная классификация со всеми видами и маневрами.	
4	Классификация содержит 85% всей информации.	
3	Классификация содержит 70% всей информации.	

Дидактическая единица: 2.14 анализировать характеристики летательных аппаратов для определения предельных возможностей

Занятие(-я):

5.3.2. Расстановка сил и моментов при выполнении фигур пилотажа.

Задание №1 (20 минут)

Определите перегрузки и инерционные силы на фигурах пилотажа:

- 1. Бочка;
- 2. Горка;
- 3. Вираж;
- 4. Плоский штопор.

Оценка	Показатели оценки	
5	Определены перегрузки и инерционные силы для 4 случаев.	
4	Определены перегрузки и инерционные силы для 3 случаев.	
3	Определены перегрузки и инерционные силы для 2 случаев.	

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

№ семестра	Вид промежуточной аттестации
4	Экзамен

Экзамен может быть выставлен автоматически по результатам текущих
контролей
Текущий контроль №1
Текущий контроль №2
Текущий контроль №3
Текущий контроль №4
Текущий контроль №5
Текущий контроль №6
Текущий контроль №7
Текущий контроль №8
Текущий контроль №9
Текущий контроль №10
Текущий контроль №11
Текущий контроль №12
Текущий контроль №13
Текущий контроль №14

Метод и форма контроля: Устный опрос (Опрос)

Вид контроля: По выбору выполнить 1 теоретическое задание и 1 практическое задание

Дидактическая единица для контроля:

1.1 принцип возникновения аэродинамических явлений

Задание №1 (из текущего контроля) (10 минут)

Напишите 5 основных параметров воздуха с их описанием и единицами измерений.

Оценка	Показатели оценки	
5	Записаны 5 параметров с их кратким описанием и единицами измерения.	
4	Записаны 4 параметра с их кратким описанием и единицами измерения.	

	3	Записаны 3 параметра с их кратким описанием и единицами
١		измерения.

2.14 анализировать характеристики летательных аппаратов для определения предельных возможностей

Задание №1 (из текущего контроля) (20 минут)

Определите перегрузки и инерционные силы на фигурах пилотажа:

- 1. Бочка;
- 2. Горка;
- 3. Вираж;
- 4. Плоский штопор.

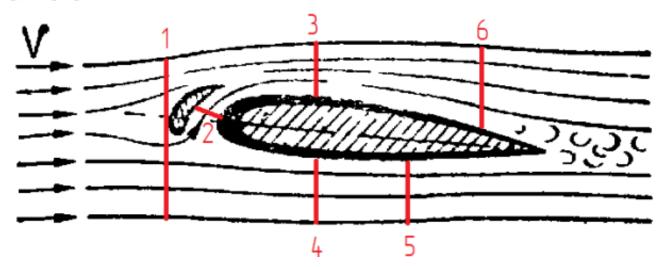
Оценка	Показатели оценки
5	Определены перегрузки и инерционные силы для 4 случаев.
4	Определены перегрузки и инерционные силы для 3 случаев.
3	Определены перегрузки и инерционные силы для 2 случаев.

Дидактическая единица для контроля:

1.19 силы, действующие на воздушный винт

Задание №1 (из текущего контроля) (15 минут)

Выполните график зависимости тяги винта от скорости самолета. Определить максимальную скорость полета самолета на двух разных углах установки винта.


Оценка	Показатели оценки
5	Построен график зависимости тяги винта от скорости самолета. Определена максимальная скорость полета самолета на двух углах установки винта.
4	Построен график зависимости тяги винта от скорости самолета. Определена максимальная скорость полета самолета на одном угле установки винта.
3	Построен график зависимости тяги винта от скорости самолета. Не определена максимальная скорость полета самолета на разных углах установки винта.

Дидактическая единица для контроля:

2.1 рассчитывать давление и скорость потока газа

Задание №1 (из текущего контроля) (10 минут)

Определите зависимость давлений и скорости потока в разных сечениях потока вокруг профиля относительно "Сечение 6".

Оценка	Показатели оценки
5	Верно даны значения V_i (скорости) и P_i (давления) относительно V_6 и P_6 для 5 сечений.
4	Верно даны значения V_i (скорости) и P_i (давления) относительно V_6 и P_6 для 4 сечений.
3	Верно даны значения V_i (скорости) и P_i (давления) относительно V_6 и P_6 для 3 сечений.

Дидактическая единица для контроля:

1.2 понятия положения летательного аппарата в пространстве

Задание №1 (из текущего контроля) (10 минут)

Сформулируйте определения понятий "Рыскание", "Крен", "Тангаж" и "Угол атаки".

Оценка	Показатели оценки
5	Сформулированы 4 определения с указанием родового понятия и видовых отличий.
4	Сформулированы 3 определения с указанием родового понятия и видовых отличий.
3	Сформулированы 2 определения с указанием родового понятия и видовых отличий.

Дидактическая единица для контроля:

2.9 рассчитывать графики аэродинамических сил и поляры при работе механизации

Задание №1 (из текущего контроля) (15 минут)

Для одного самолета начертите графики зависимости Cy и Cx от угла атаки при работе:

- 1. Только закрылков в горизонтальном полете;
- 2. Только предкрылков в горизонтальном полете;
- 3. Закрылков и интерцепторов на посадке;
- 4. Закрылков и предкрылков на взлетном режиме.

Оценка	Показатели оценки
5	Выполнены графики для всех 4 случаев.
4	Выполнены графики для только для 3 случаев.
3	Выполнены графики для только для 2 случаев.

Дидактическая единица для контроля:

2.2 определять значимые явления воздушного потока

Задание №1 (из текущего контроля) (15 минут)

Выполните расчет точки перехода ламинарного пограничного слоя в турбулентный реального профиля самолета.

Оценка	Показатели оценки
	Определен характер обтекания. Учтены элементы управления точкой перехода. Верно выполнен расчет.
4	Определен характер обтекания. Верно выполнен расчет.
3	Верно выполнен расчет без учета сопутствующих параметров.

Дидактическая единица для контроля:

1.13 понятие аэродинамического качества

Задание №1 (из текущего контроля) (15 минут)

Рассчитайте значения аэродинамического качества для 6 углов атаки и определите наивыгоднейший угол атаки.

Оценка	Показатели оценки
5	Верно найдено аэродинамическое качество для 6 углов атаки. В выводе определен наивыгоднейший угол атаки или его диапазон.
4	Верно найдено аэродинамическое качество для 6 углов атаки. Не определен наивыгоднейший угол атаки или его диапазон.
3	Верно найдено аэродинамическое качество для 4 углов атаки. Не определен наивыгоднейший угол атаки или его диапазон.

1.3 правила расчёта движения тел в аэродинамике

Задание №1 (из текущего контроля) (10 минут)

Распишите энергетические составляющие уравнения Бернулли с описанием их действия в потоке.

Оценка	Показатели оценки
5	Даны все три энергетические составляющие уравнения и для всех трех имеются описания их действия.
4	Даны все три энергетические составляющие уравнения и для двух имеются описания их действия.
3	Даны все три энергетические составляющие уравнения.

Дидактическая единица для контроля:

2.6 строить графики зависимости аэродинамических сил от параметров полета **Задание №1 (из текущего контроля) (15 минут)**

Построийте разные графики зависимости коэффициента подъемной силы и лобового сопротивления от угла атаки.

Оценка	Показатели оценки
5	Построены два графика. Оба графика выполнены в масштабе. Нанесены значения основных точек. Точки почти не отклонены от своих значений (в пределах коэффициента 0,9 от значения).
4	Построены два графика. Оба графика выполнены в масштабе. Нанесены значения основных точек. Точки слегка отклонены от своих значений (в пределах коэффициента 0,8 от значения).
3	Построены два графика. Оба графика выполнены в масштабе. Нанесены значения основных точек. Точки отклонены от своих значений (в пределах коэффициента 0,7 от значения).

Дидактическая единица для контроля:

1.11 факторы, влияющие на подъемную силу

Задание №1 (из текущего контроля) (10 минут)

Определите значения подъемной силы аэродинамического профиля на разных ключевых углах атаки.

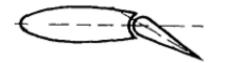
Оценка	Показатели оценки
5	Рассчитаны значения подъемной силы на 5 разных углах атаки.

4	Рассчитаны значения подъемной силы на 4 разных углах атаки.
3	Рассчитаны значения подъемной силы на 3 разных углах атаки.

2.3 определять значения критического числа маха в зависимости от скачков уплотнения

Задание №1 (из текущего контроля) (15 минут)

Определите вид и угол скачка уплотнения, возникающего: на носу фюзеляжа, на передней кромке крыла, на передней кромке стабилизатора.


Оценка	Показатели оценки
5	Определены вид и угол скачков уплотнения по всем трем частям самолета.
4	Определены вид и угол скачков уплотнения по двум частям самолета.
3	Определены вид и угол скачков уплотнения по одной части самолета.


Дидактическая единица для контроля:

2.8 определять моменты и силы на управляющие поверхности

Задание №1 (из текущего контроля) (15 минут)

Нанесите силы и моменты на часть оперения в разном положении для всех представленных случаев.

Оценка	Показатели оценки
5	Для всех трех рисунков нанесены: подъемная сила, образующийся момент, вектор силы приложения усилия.
4	Для двух рисунков нанесены: подъемная сила, образующийся момент, вектор силы приложения усилия.
3	Для одного рисунка нанесены: подъемная сила, образующийся момент, вектор силы приложения усилия.

Дидактическая единица для контроля:

1.4 классификацию воздушного потока

Задание №1 (из текущего контроля) (15 минут)

Запишите полную классификацию воздушного потока по его основным составляющим.

Оценка	Показатели оценки
5	Записаны все виды потока по движению, нахождению в нем тела, и структуре потока в аэродинамике.
4	Записаны все виды потока по нахождению в нем тела, и структуре потока в аэродинамике.
3	Записаны все виды потока по структуре потока в аэродинамике.

Дидактическая единица для контроля:

1.24 способы обеспечения управляемости

Задание №1 (из текущего контроля) (10 минут)

Выполните эскизы положения управляющих поверхностей самолета с приложенными силами для следующих базовых маневров:

- 1. Правый крен;
- 2. Кабрирование;
- 3. Разворот влево при кабрирующем моменте;
- 4. Смена курса вправо;
- 5. Стабилизация самолета с кабрирующим углом атаки.

Оценка	Показатели оценки
5	Выполнены эскизы в полном объеме для 5 случаев.
4	Выполнены эскизы в полном объеме для 4 случаев.
3	Выполнены эскизы в полном объеме для 3 случаев.

Дидактическая единица для контроля:

2.4 рассчитывать геометрические параметры несущих поверхностей

Задание №1 (из текущего контроля) (20 минут)

По схеме самолета рассчитайте: размах крыла, площадь крыла, среднюю аэродинамическую хорду, угол стреловидности, удлинение крыла, сужение крыла, максимальную толщину профиля в CAX и максимальную кривизну профиля в CAX.

Оценка	Показатели оценки
5	Верно определены 7 из 8 параметров.
4	Верно определены 6 из 8 параметров.
3	Верно определены 4 из 8 параметров.

1.5 способы управления пограничным слоем

Задание №1 (из текущего контроля) (10 минут)

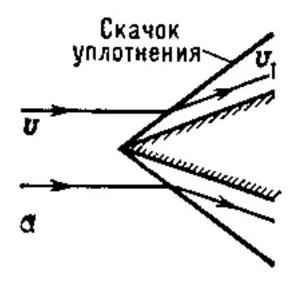
Запишите развернутую классификацию методов управления точкой перехода ламинарного пограничного слоя в турбулентный.

Оценка	Показатели оценки
5	Записана развернутая классификация трех методов.
4	Записана развернутая классификация двух методов.
3	Записана развернутая классификация одного метода.

Дидактическая единица для контроля:

2.5 рассчитывать геометрические параметры корпусов летательных аппаратов Задание №1 (из текущего контроля) (15 минут)

Рассчитайте по схеме самолета длину основных частей фюзеляжа, удлинение носовой части, удлинение хвостовой части.


Оценка	Показатели оценки
5	Верно определены все параметры.
	Определены длины основных частей самолета и удлинение носовой или хвостовой части.
3	Определены только длины основных частей самолета.

Дидактическая единица для контроля:

1.26 понятие скачка уплотнения

Задание №1 (из текущего контроля) (10 минут)

Опишите вид представленного скачка уплотнения и запишите зависимости V и V_1 по траектории A от числа Maxa.

Оценка	Показатели оценки
5	Описан вид скачка уплотнения, определены зависимости скоростей по траектории со значениями относительно числа Маха.
4	Описан вид скачка уплотнения, определены зависимости скоростей по траектории без привязки к числу Маха.
3	Описан вид скачка уплотнения.

2.7 строить поляры для нахождения аэродинамического качества Задание №1 (из текущего контроля) (15 минут)

По графикам зависимости Су и Сх от угла атаки постройте поляру крыла. Вычислите по графику аэродинамическое качество по двум случайным линиям.

Оценка	Показатели оценки
5	Верно построена поляра крыла. Рассчитано аэродинамическое качество для двух линий.
4	Верно построена поляра крыла. Рассчитано аэродинамическое качество для одной линии.
3	Верно построена поляра крыла. Не рассчитано аэродинамическое качество для линий.

Дидактическая единица для контроля:

2.13 определять компоновку самолета для наилучшей балансировки Задание №1 (из текущего контроля) (10 минут)

Рассчитайте параметры центровки летательного аппарата под три разных типа загрузки с учетом обеспечения устойчивости и управляемости.

Оценка	Показатели оценки
5	Верно рассчитаны все три случая.
4	Верно рассчитаны два случая.
3	Верно рассчитан один случай.

Дидактическая единица для контроля:

1.6 явления, возникающие при переходе на околозвуковые и сверхзвуковые скорости

Задание №1 (из текущего контроля) (15 минут)

Перечислите и объясните явления, которые возникают на околозвуковых и сверхзвуковых скоростях.

Оценка	Показатели оценки
5	Перечислены и объяснены 4 явления.
4	Перечислены и объяснены 3 явления.
3	Перечислены и объяснены 2 явления.

Дидактическая единица для контроля:

1.9 основные параметры фюзеляжей и корпусов

Задание №1 (из текущего контроля) (15 минут)

Определите внешнею форму фюзеляжа в боковой проекции и 5 сечений отсеков.

Оценка	Показатели оценки
5	Верно определена форма фюзеляжа в боковой проекции и 5 сечений отсеков.
4	Верно определена форма фюзеляжа в боковой проекции и 3 сечений отсеков.
3	Верно определена только форма фюзеляжа в боковой проекции.

Дидактическая единица для контроля:

2.10 рассчитывать геометрические параметры воздушного винта

Задание №1 (из текущего контроля) (10 минут)

Для самолета с воздушным винтом определите геометрический шаг, скольжение при двух разных углах установки лопасти винта.

Оценка	Показатели оценки
5	Все параметры рассчитаны верно для двух случаев.
4	Один случай рассчитан полностью верно, второй имеет ошибки
	при расчете шага или скольжения.
3	Рассчитан только один случай.

1.7 классификацию аэродинамических профилей

Задание №1 (из текущего контроля) (10 минут)

По индивидуальной схеме самолета определите аэродинамические профиля несущих поверхностей и опишите их работу в самолете.

Оценка	Показатели оценки
5	Верно определены виды аэродинамических профилей крыла, горизонтального оперения и вертикального оперения. Каждый профиль содержит описание своей работы в самолете.
4	Верно определены виды аэродинамических профилей крыла, горизонтального оперения и вертикального оперения. Два любых профиля содержат описание своей работы в самолете.
3	Верно определены виды аэродинамических профилей крыла, горизонтального оперения и вертикального оперения. Один любой профиль содержит описание своей работы в самолете.

Дидактическая единица для контроля:

2.11 определять силы, действующие на воздушный винт

Задание №1 (из текущего контроля) (15 минут)

По схеме самолета определить силу тяги воздушного винта.

Оценка	Показатели оценки
5	Сила тяги определена верно с учетом лобового сопротивления и
	сопротивления вращения воздушного винта.
4	Сила тяги определена верно только с учетом лобового
	сопротивления или сопротивления вращения воздушного винта.
3	Сила тяги определена верно без учета лобового сопротивления и
	сопротивления вращения воздушного винта.

Дидактическая единица для контроля:

2.12 рассчитывать режим горизонтального полета

Задание №1 (из текущего контроля) (15 минут)

Постройте кривые Жуковского по тягам. Рассчитайте по ним первый и второй режим горизонтального полета.

Оценка	Показатели оценки
5	Построена кривая Жуковского по тягам. Выполнены расчеты первого и второго режима.
4	Построена кривая Жуковского по тягам. Выполнены расчеты первого или второго режима.
3	Построена кривая Жуковского по тягам. Не выполнены расчеты первого и второго режима.

Дидактическая единица для контроля:

1.8 виды форм крыла летательного аппарата

Задание №1 (из текущего контроля) (10 минут)

По индивидуальной схеме самолета определите:

- 1. форму крыла и горизонтального оперения в плане,
- 2. расположение крыла спереди,
- 3. замерить угол поперечного V крыла и горизонтального оперения.

Оценка	Показатели оценки
5	Определены форма крыла и горизонтального оперения в плане, расположение крыла спереди и угол поперечного V крыла и горизонтального оперения.
4	Определены форма только крыла в плане, расположение крыла спереди и угол поперечного V только крыла.
3	Определены форма только крыла в плане и угол поперечного V только крыла.

Дидактическая единица для контроля:

1.18 характеристики воздушных винтов

Задание №1 (из текущего контроля) (10 минут)

Изобразите вращающийся воздушный винт со всеми его геометрическими характеристиками.

Оценка	Показатели оценки

5	Изображен воздушный винт сбоку и нанесены 5 геометрических параметров.
4	Изображен воздушный винт сбоку и нанесены 4 геометрических параметра.
3	Изображен воздушный винт сбоку и нанесены 3 геометрических параметра.

1.12 факторы, влияющие на аэродинамическое сопротивление

Задание №1 (из текущего контроля) (10 минут)

Определите значения лобового сопротивления аэродинамического профиля на разных ключевых углах атаки.

Оценка	Показатели оценки
5	Рассчитаны значения лобового сопротивления на 5 разных углах атаки.
4	Рассчитаны значения лобового сопротивления на 4 разных углах атаки.
3	Рассчитаны значения лобового сопротивления на 3 разных углах атаки.

Дидактическая единица для контроля:

1.10 понятие полной аэродинамической силы

Задание №1 (из текущего контроля) (10 минут)

Произведите сумму векторов давлений по профилю крыла для нахождения полной аэродинамической силы. Разбейте полную аэродинамическую силу на составляющие векторы по осям.

Оценка	Показатели оценки
5	Графически простроена сумма векторов. Нанесена полная аэродинамическая сила. Выполнено деление силы по осям.
4	Графически простроена сумма векторов. Нанесена полная аэродинамическая сила. Не выполнено деление силы по осям.
3	Графически простроена сумма векторов. Не нанесена полная аэродинамическая сила. Не выполнено деление силы по осям.

Дидактическая единица для контроля:

1.14 принцип работы управляющих поверхностей

Задание №1 (из текущего контроля) (15 минут)

Перечислите все виды управляющих поверхностей, к чему они крепятся и как отклоняются.

Оценка	Показатели оценки
5	Перечислены управляющие поверхности, указаны части самолета, к которым они крепятся, описан принцип их
	отклонения в количестве 5 штук.
4	Перечислены управляющие поверхности, указаны части самолета, к которым они крепятся, описан принцип их отклонения в количестве 4 штук.
3	Перечислены управляющие поверхности, указаны части самолета, к которым они крепятся, описан принцип их отклонения в количестве 3 штук.

Дидактическая единица для контроля:

1.15 понятие механизации крыла

Задание №1 (из текущего контроля) (15 минут)

Напишите точное определение понятию "Механизация" и укажите основные режимы полета, на которых может быть применена механизация самолета с объяснением изменения параметров.

Оценка	Показатели оценки
5	Написаны: понятие механизации, указаны три режима полета на которых применена механизация с объяснением их параметров.
4	Написаны: понятие механизации, указаны два режима полета на которых применена механизация с объяснением их параметров.
3	Написаны: понятие механизации, указан один режим полета на которых применена механизация с объяснением их параметров.

Дидактическая единица для контроля:

1.16 классификацию поверхностей механизации крыла

Задание №1 (из текущего контроля) (10 минут)

По представленной схеме самолета определите все используемые типы механизации в нем и объясните их влияние на полет.

Оценка	Показатели оценки
5	Определена вся механизация и для всех поверхностей имеются
	пояснения их влияния на полет.

Определена вся механизация и для всех, кроме одной поверхности, имеются пояснения их влияния на полет.
Определена вся механизация и для только к одной поверхности имеются пояснения влияния на полет.

1.17 понятие воздушного винта

Задание №1 (из текущего контроля) (15 минут)

Сформулируйте определение понятия "Воздушный вид".

Оценка	Показатели оценки
5	Представлено определение с родовым понятием и 4 видовыми отличиями.
4	Представлено определение с родовым понятием и 3 видовыми отличиями.
3	Представлено определение с родовым понятием и 2 видовыми отличиями.

Дидактическая единица для контроля:

1.20 условия для выполнения горизонтального полета

Задание №1 (из текущего контроля) (20 минут)

Рассчитайте скорости горизонтального полета для диапазона высот от 0 до 6000 выбрав 10 точек.

Оценка	Показатели оценки
5	Для 9 из 10 точек верно рассчитана скорость горизонтального полета.
4	Для 7 из 10 точек верно рассчитана скорость горизонтального полета.
3	Для 5 из 10 точек верно рассчитана скорость горизонтального полета.

Дидактическая единица для контроля:

1.21 алгоритм определения удельного расхода топлива

Задание №1 (из текущего контроля) (10 минут)

Рассчитайте удельный расход топлива и продолжительность полета на крейсерском режиме полета для трех разных высот.

Оценка	Показатели оценки
5	Для всех трех высот определены удельный расход топлива и
	продолжительность полета.
4	Для двух высот определены удельный расход топлива и
	продолжительность полета.
3	Для одной высоты определены удельный расход топлива и
	продолжительность полета.

1.22 силы и моменты, влияющие на устойчивость и управляемость летательного аппарата

Задание №1 (из текущего контроля) (10 минут)

На схеме в трех проекциях нанесите силы и моменты, действующие на самолет при его балансировке.

Оценка	Показатели оценки
5	На всех трех проекциях нанесены правильные направления векторов приложенных сил и моментов.
4	Только на двух проекциях нанесены правильные направления векторов приложенных сил и моментов.
3	Только на одной проекции нанесены правильные направления векторов приложенных сил и моментов.

Дидактическая единица для контроля:

1.23 способы обеспечения устойчивости

Задание №1 (из текущего контроля) (10 минут)

По схеме самолета, приложенным к нему силам и центру масс, найдите:

- 1. Точку аэродинамического фокуса стабилизатора.
- 2. Силу, образующуюся на стабилизаторе.
- 3. Аэродинамический фокус самолета.

Оценка	Показатели оценки
5	Для схемы самолета верно найдены три параметра.
4	Для схемы самолета верно найдены два параметра.
3	Для схемы самолета верно найден один параметр.

Дидактическая единица для контроля:

1.25 маневры, выполняемые летательными аппаратами

Задание №1 (из текущего контроля) (15 минут)

Приведите полную классификацию пилотажа на самолете с видами и выполняемыми маневрами.

Оценка	Показатели оценки
5	Приведена полная классификация со всеми видами и маневрами.
4	Классификация содержит 85% всей информации.
3	Классификация содержит 70% всей информации.