Контрольно-оценочные средства для проведения текущего контроля

по ОП.08 Теория алгоритмов (2 курс, 3 семестр 2022-2023 уч. г.)

Текущий контроль №1

Форма контроля: Лабораторная работа (Опрос) **Описательная часть:** Компьютерное тестирование

Задание №1

дать определение "детерминированность".

Образец ответа:

Детерминированность (от лат. determinans — определяющий) — определяемость. Детерминированность может подразумевать определяемость на общегносеологическом уровне или для конкретного алгоритма. Под жесткой детерминированностью процессов в мире понимается однозначная предопределенность, т. е. у каждого следствия есть строго определенная причина. В таком смысле является антонимом стохастичности. Но детерминированность не всегда тождественна предопределенности. Например, может быть детерминированность будущим (целевая детерминация), когда предполагаемые субъектом цели в его возможном будущем определяют его поведение в настоящем.

	_
Оценка	Показатели оценки
5	Дано полное формальнологическое определение термину.
	Пояснено и приведены примеры применения термина.
4	Дано полное формальнологическое определение термину.
	Приведены примеры.
3	Дано определение термину.

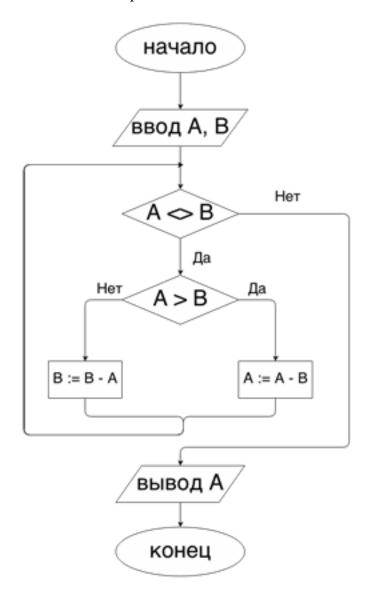
Задание №2

Привести примеры алгоритмов Евклида.

Например:

Алгоритм Евклида «с вычитанием»

Пусть а и b — целые числа, тогда верны следующие утверждения:


Все общие делители пары а и b являются также общими делителями пары а — b, b;

И наоборот, все общие делители пары а — b и b являются также общими делителями пары а и b;

$$HOД(A, B) = HOД(A - B, B)$$
, если $A > B$;

$$HOД(A, 0) = A.$$

Блок-схема алгоритма Евклида «с вычитанием»

Листинг:

var

a, b: integer;

begin

write('a = ');

```
readln(a);
write('b = ');
readln(b);
while a \Leftrightarrow b do
if a > b then
a := a - b
else
b := b - a;
writeln('NOD = ', a);
```

end.

Оценка	Показатели оценки
5	Приведены три примера алгоритма Евклида
4	Приведены два примера алгоритма Евклида
3	Приведен один пример алгоритма Евклида

Текущий контроль №2

Форма контроля: Письменный опрос (Опрос) **Описательная часть:** Проверочная работа

Задание №1

Выведите НОД n чисел - Pascal.

Листинг:

var n,i,g,k:integer;

m:array[1..1000] of integer; function nod(a,b:longint):longint; begin

if b mod a=0 then nod:=a else nod:=nod(b,a mod b); end;

begin write('n='); read(n); label m1; i:=1;

read(m[i]);

```
i:=i+1;
if i<n then goto m1; g:=m[1];
label m2; k:=2
g:=nod(g,m[i]); k:=k+1;
if k<n then goto m2; writeln('NOD=',g); readln;</pre>
```

end.

Оценка	Показатели оценки
5	Описаны входные данные (их типы, диапазон).
	Описаные выходные данные.
	Записано математическое соотношение, связывающее результат с исходными данными.
	Алгоритм решения задачи соответствует математическому понятию.
	Блок-схема построена в соответствии с ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем».
4	Описаны входные данные (их типы, диапазон).
	Описаные выходные данные.
	Записано математическое соотношение, связывающее результат с исходными данными.
	Блок-схема соответствует выбранному алгоритму решения задачи.
3	Описаны входные данные (их типы, диапазон).
	Описаные выходные данные.
	Записано математическое соотношение, связывающее результат с исходными данными.

Задание №2

Разработать алгоритм работы программы в виде блок-схемы и программный код на любом языке программирования для следующей задачи:

Дано натуральное число. Определить четное оно или нечетное.

	pursues mone, supercours removement no remove.
Оценка	Показатели оценки

3	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными.
4	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными;
	Блок-схема соответствует выбранному алгоритму решения задачи.
5	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными;
	Алгоритм решения задачи соответствует математическому понятию четных и нечетных чисел.
	Блок-схема построена в соответствии с ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем»; Блок-схема соответствует выбранному алгоритму решения задачи.

Текущий контроль №3

Форма контроля: Практическая работа (Опрос)
Описательная часть: Проверочная работа

Задание №1

	1. Какие способы описания алгоритмов в	ы знаете?
1)		_
4)		
	[айте определение.	
Прог	грамма это -	

Образец ответа:

Детерминированность (от лат. determinans — определяющий) — определяемость. Детерминированность может подразумевать определяемость на общегносеологическом уровне или для конкретного алгоритма. Под жесткой детерминированностью процессов в мире понимается однозначная предопределенность, т. е. у каждого следствия есть строго определенная причина. В таком смысле является антонимом стохастичности. Но детерминированность не всегда тождественна предопределенности. Например, может быть детерминированность будущим (целевая детерминация), когда предполагаемые субъектом цели в его возможном будущем определяют его поведение в настоящем.

3. Дайте опреде	ление.		
Программа это -			

Оценка	Показатели оценки
3	Дано определение термину.
	Одноиз трех заданий.
4	Дано полное формальнологическое определение термину.
	Приведены примеры.
	Два из трех заданий.
5	Дано полное формальнологическое определение термину.
	Пояснено и приведены примеры применения термина.
	Все три задания.

Залание №2

Разработать алгоритм работы программы в виде блок-схемы и программный код на любом языке программирования для следующей задачи:

Дано натуральное число. Определить произведение всех его цифр.

Оценка	Показатели оценки
3	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными

4	Необходимо выполнить следующие операции и приемы:
	Описание входных данных (их типов, диапазонов);
	Описание выходных данных;
	Запись математического соотношения, связывающего результат с исходными данными.
	Блок-схема соответствует выбранному алгоритму решения задачи.
5	Необходимо выполнить следующие операции и приемы:
	Описание входных данных (их типов, диапазонов);
	Описание выходных данных;
	Запись математического соотношения, связывающего результат с исходными данными.
	Алгоритм решения задачи соответствует математическому решению произведения
	цифр числа.
	Блок-схема построена в соответствии с ГОСТ 19.701-90 «Схемы алгоритмов программ,
	данных и систем»;
	Блок-схема соответствует выбранному алгоритму решения задачи.

Текущий контроль №4

Форма контроля: Письменный опрос (Опрос) Описательная часть: Проверочная работа

Задание №1

Выполните 5 теоретических заданий.

Каждое правильно выполненное задание оценивается в один балл. Возможен только один правильный ответ в каждом задании. Максимальное количество баллов - 5.

1. В программе используется одномерный целочисленный массив A с индексами от 0 до 9. Ниже представлен фрагмент программы, в котором значения элементов сначала задаются, а затем меняются.

For i:=0 to 9 do

A[i]:=9+I;

For i:=0 to 4 do

Begin

K:=A[i]; A[i]:=A[9-i]; A[9-i]:=A[i]-k;

End;

Постройте блок-схему по программе. Чему будут равны элементы этого массива после

выполнения фрагмента программы? 1) 9 10 11 12 13 9 8 7 6 5 2) 18 17 16 15 14 9 7 5 3 1 3) 18 17 16 15 14 1 3 5 7 9 4) 18 17 16 15 14 0 0 0 0 0 2. Определите, какое число будет напечатано в результате выполнения следующего алгоритма Var a, b, t, m, r: integer; Function F(x: integer): integer; begin F:=4*(x+2)*(x-4); End; Begin A:=-20; b:=20; m:=a; r:=F(a); For t:=a to b d Begin If $(F(t) \le r)$ then begin m := t; r := F(t); end; End: Write (m); End. 3. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями: F(1) = 1, F(n) = F(n-1)*n, npu n>1.Чему равно значение функции F(6)? В ответ запишите только натуральное число

4. Выберите верное утверждение:

Одномерный массив характеризуется множеством элементов, которые стоят в памяти, имеют одинаковый тип данных.

Одномерный массив характеризуется множеством элементов, которые стоят в памяти, имеют общее имя и одинаковый тип данных.

Одномерный массив характеризуется множеством элементов, которые стоят в памяти рядом, имеют общее имя и одинаковый тип данных.

5. Определите чему равен х после прохождения следующего алгоритма

```
a[5]=\{1,2,3,4,5\};
for i:=1 to 5 do
a[i]=n-i+1;
a[1]:=a[2];
```

x:=a[1];

Оценка	Показатели оценки
3	Обучающийся выполнил 2-3 задания
4	Обучающийся выполнил 4 задания
5	Обучающийся выполнил 5 заданий

Задание №2

Разработать алгоритм работы программы в виде блок-схемы и программный код на любом языке программирования для следующей задачи:

Дан одномерный массив из 20 чисел со значениями в диапазоне [-10;40]. Определить количество значений кратных 5.

Оценка	Показатели оценки
3	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Алгоритм решения задачи соответствует понятиям работы с одномерными массивами.

4	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными. Алгоритм решения задачи соответствует понятиям работы с одномерными массивами. Блок-схема соответствует выбранному алгоритму решения задачи.
5	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными. Алгоритм решения задачи соответствует понятиям работы с одномерными массивами. Алгоритм решения задачи соответствует математическому определению чисел кратных 5. Блок-схема построена в соответствии с ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем»; Блок-схема соответствует выбранному алгоритму решения задачи.

Текущий контроль №5

Форма контроля: Контрольная работа (Опрос)

Описательная часть: Письменная контрольная работа

Задание №1

Разработать программный код, который заполнит массив так, как показано на рисунке.

12	24		120
		:	:
2	14		110
1	13		109

Оценка	Показатели оценки

3	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными.
4	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными. Алгоритм решения задачи соответствует понятиям работы с двумерными массивами.
5	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными. Алгоритм решения задачи соответствует понятиям работы с двумерными массивами. Алгоритм решения задачи соответствует понятиям работы с памятью.

Задание №2

Разработать программный код для следующей задачи:

В зрительном зале 25 рядов. В каждом ряду 36 мест (кресел). Информация о проданных билетах хранится в двумерном массиве (номер строки – номер ряда, номер столбца – номер места). Если билет продан значение массива = 1, если нет, то значение= 0. Места распределите случайным образом и составьте программу, определяющую число проданных мест в 12-м ряду

После вывода ответа на вторую задачу поменяйте местами второй и предпоследний столбец местами.

Оценка	Показатели оценки
3	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными.
4	Необходимо выполнить следующие операции и приемы: Описание входных данных (их типов, диапазонов); Описание выходных данных; Запись математического соотношения, связывающего результат с исходными данными. Алгоритм решения задачи соответствует понятиям работы с двумерными массивами.

Необходимо выполнить следующие операции и приемы:
 Описание входных данных (их типов, диапазонов);
 Описание выходных данных;
 Запись математического соотношения, связывающего результат с исходными данными.
 Алгоритм решения задачи соответствует понятиям работы с двумерными массивами.
 Алгоритм решения задачи соответствует понятиям работы с памятью.

Текущий контроль №6

Форма контроля: Контрольная работа (Опрос)

Описательная часть: Письменная контрольная работа

Задание №1

Оценка	методы вычисления сложности работы алгоритмов. Показатели оценки
5	Обучающийся должен:
	I. Указать в виде оценивающего ресурса процессорное время (вычислительная сложность) и память (сложность алгоритма по памяти). Оценка позволяет предсказать время выполнения и сравнивать эффективность алгоритмов.
	II. Описать каждый метод:
	1) Вычислительная сложность - подсчет количества выполняемых операций. Точное количество операций будет зависеть от обрабатываемых данных, поэтому имеет смысл говорить о наилучшем, наихудшем и среднем случаях. (привести примеры расчета, достаточно - счетчик)
	2) Сложность алгоритма по памяти:
	 память состоит из ячеек, каждая из которых имеет адрес и может хранить один элемент данных; каждое обращение к памяти занимает одну единицу времени, независимо от номера адресуемой ячейки;
	 количество памяти достаточно для выполнения любого алгоритма; процессор выполняет любую элементарную операцию за один временной шаг; циклы и функции не считаются элементарными операциями.

4	Обучающийся должен
	I. Указать в виде оценивающего ресурса процессорное время (вычислительная сложность) и память (сложность алгоритма по памяти). Оценка позволяет предсказать время выполнения и сравнивать эффективность алгоритмов.
	II. Описать один из двух методов:
	1) Вычислительная сложность - подсчет количества выполняемых операций. Точное количество операций будет зависеть от обрабатываемых данных, поэтому имеет смысл говорить о наилучшем, наихудшем и среднем случаях. (привести примеры расчета, достаточно - счетчик)
	2) Сложность алгоритма по памяти:
	 память состоит из ячеек, каждая из которых имеет адрес и может хранить один элемент данных; каждое обращение к памяти занимает одну единицу времени, независимо от номера адресуемой ячейки; количество памяти достаточно для выполнения любого алгоритма; процессор выполняет любую элементарную операцию за один временной шаг; циклы и функции не считаются элементарными операциями.
3	Обучающийся должен указать в виде оценивающего ресурса процессорное время (вычислительная сложность) и память (сложность алгоритма по памяти). Оценка позволяет предсказать время выполнения и сравнивать эффективность алгоритмов.

Задание №2

Дан программный код, определить сложность работы алгоритма:

min := array[1] for i:= 2 to N do

if array[i] < min then min := array[i];

ita(i	ر بـــــــــــــــــــ
write(min) Оценка	Показатели оценки
3	Рассчитана сложность работы алгоритма одним из методов (вычислительная сложность или сложность алгоритма по памяти) с использованием таблицы определения сложности алгоритма.
4	Рассчитана сложность работы алгоритма одним из методов (вычислительная сложность или сложность алгоритма по памяти) без использования таблицы определения сложности алгоритма.
5	Рассчитана сложность работы алгоритма двумя методами (вычислительная сложность или сложность алгоритма по памяти) без использования таблицы определения сложности алгоритма.