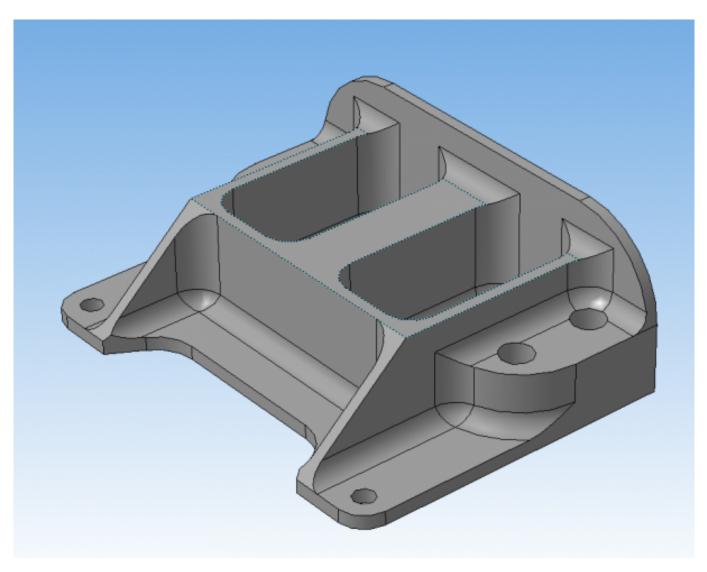
# Перечень теоретических и практических заданий к дифференцированному зачету по МДК.01.02 Системы автоматизированного проектирования и программирования в машиностроении (4 курс, 7 семестр 2023-2024 уч. г.)

Форма контроля: Индивидуальные задания (Сравнение с аналогом)

**Описательная часть:** Защита. Дать формально-логические ответы на два теоретических вопроса и выполнить одно практическое задание.


# Перечень теоретических заданий: Задание №1

Выполнить КЭМ детали по заданным параметрам:

Вписать деталь в заданные контуры и размеры, разместить на ней требуемые элементы для моделирования.

Разместить: 1 бобышку произвольной формы (круглая, квадратная, шестигранная ...), 1 закрытый карман прямоугольной формы, один карман круглый диаметром от 30 мм, открытый двухступенчатый карман, четыре уступа (полки), одно наклонное ребро и два скругления радиусом R15 на вертикальных ребрах, отверстие диаметром 20H7, 2 отверстие диаметром 8H9, 8 отверстие диаметром 6, радиуса скругления в углах R8, радиус скругления основания (между вертикальными ребрами и полотном) R3.

Пример:



| Оценка | Показатели оценки                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|
| 5      | Все условия задания выполнены без отклонений.                                                                                        |
| 4      | Выполнены все заданные элементы и вписанны в заданною форму и размер, но несовпадаю некоторые размеры (3) с заданными для элементов. |
| 3      | Выполнены все заданные элементы и вписанны в заданною форму но размер для в писания нарушен и нарушены размеры заданных элементов.   |

Подобрать материал режущей части инструментов и обосновать его выбор предварительно проанализировав чертеж авиационной детали

| Оценка | Показатели оценки                                   |
|--------|-----------------------------------------------------|
| 5      | Выбор режущей части сделан правильно и обоснован    |
| 4      | Выбор режущей части сделан верно но плохо обоснован |
| 3      | Выбор режущей части сделан не с первого раза        |

Перечислить порядок разработки технологического процесса

- 1. Входной контроль заготовки
- 2. Разметка базовых поверхностей
- 3. Обработка базовых поверхностей
- 4. Слесарная операция
- 5. Контрольная
- 6. Обработка первой стороны детали на оборудовании с ЧПУ
- 7. Слесарная операция
- 8. Контрольная
- 9. Обработка второй стороны детали на оборудовании с ЧПУ
- 10. Слесарная операция
- 11. Контрольная
- 12. Доводочные операции
- 13. Слесарная операция
- 14. Контрольная
- 15. Транспортная в цех покрытия
- 16. Контрольная
- 17. Контрольная
- 18. Маркировочная

| Оценка | Показатели оценки                                        |
|--------|----------------------------------------------------------|
| 5      | Все этапы перечилины верно и в правильном порядке        |
| 4      | Все этапы перечилины верно но некоторые этапы перепутаны |
| 3      | Перечилины не все этапы и некоторые перепутаны           |

#### Залание №4

Перечислете основные виды обработки резанием и дайте их описание

- 1. **Точение** (обточка). Выполняется, когда заготовка не слишком отличается размерами от нужной детали. Этот процесс может выполняться на таком оборудовании (станках): токарных, фрезерных, сверлильных, шлифовальных, долбежных, строгальных и т. д. Для этого резания используют резец токарного станка. Процесс происходит при большой скорости вращения детали, которую ей обеспечивает резец. Это движение называется «главным». А резец двигается медленно и поступательно, вдоль или поперек. Такой вид движения имеет название «движение подачи». Скорость резания определяется главным
- 2. Сверление. Это методы обработки металлов резанием, где название говорит само за себя. Происходит на любом станке, где есть сверло. Заготовка зажимается прочно в тисках, а сверло вращается медленными поступательными движениями по одной прямой. В результате, в детали появляется отверстие с диаметром равным размеру сверла.

- 3. **Фрезерование**. Такие способы обработки металлов резанием могут выполняться лишь на специальных столах-станках горизонтально-фрезерных. Главным инструментом станочника выполняющего фрезерную обработку металла, которое и совершает главное движение, является фреза. Движение подачи производит в продольном направлении заготовка, оно происходит под прямым углом относительно движению станка. Будущую деталь крепко зажимают на столе, и все время она остается неподвижной.
- 4. Строгание. Происходит на поперечном строгательном оборудовании, станках. Обработка заготовки происходит резцом, выполняющим медленные движения по заданному направлению и обратно. Главное движение принадлежит инструменту немного изогнутому резцу. Движение подачи совершает заготовка, при чем, оно не сплошное, а прерывистое. Направление последнего движения прямо перпендикулярно главному. В этом виде станков движение резания высчитывается путем сложения рабочего и холостого ходов.
- 5. **Шлифование**. Мероприятие выполняется при помощи шлифовального круга на кругло шлифовальных станках. Режущий круг делает вращательные движения, а заготовка получает прямолинейную и круговую подачу, но если вытачивается деталь цилиндрической формы. Когда предметом обработки есть плоская поверхность, то заготовка получает подачу лишь в прямом направлении.

| Оценка | Показатели оценки                                  |
|--------|----------------------------------------------------|
| 5      | Названы все виды и дано их описание работ          |
| 4      | Названо только четыре вида обработки и их описание |
| 3      | Названо только три вида обработки и их описание    |

Перечислете виды режущих инструментов и дайте их описание

- <u>Резцы</u>: инструмент однолезвийного типа, позволяющий выполнять металлообработку с возможностью разнонаправленного движения подачи;
- <u>Фрезы</u>: инструмент, при использовании которого обработка выполняется вращательным движением с траекторией, имеющей неизменный радиус, и движением подачи, которое по направлению не совпадает с осью вращения;
- <u>Сверла</u>: режущий инструмент осевого типа, который используется для создания отверстий в материале или увеличении диаметра уже имеющихся отверстий. Обработка сверлами осуществляется вращательным движением, дополненным движением подачи, направление которого совпадает с осью вращения;
- Зенкеры: инструмент осевого типа, с помощью которого корректируются размеры и форма имеющихся отверстий, а также увеличивается их диаметр;

- <u>Развертки</u>: осевой инструмент, который применяется для чистовой обработки стенок отверстий (уменьшения их шероховатости);
- Цековки: металлорежущий инструмент, также относящийся к категории осевых и используемый для обработки торцовых или цилиндрических участков отверстий;
- Плашки: используются для нарезания наружной резьбы на заготовках;
- Метчики: также применяются для нарезания резьбы но, в отличие от плашек, не на цилиндрических заготовках, а внутри отверстий;
- Ножовочные полотна: инструмент многолезвийного типа, имеющий форму металлической полосы с множеством зубьев, высота которых одинакова. Ножовочные полотна используются для отрезания части заготовки или создания в ней пазов, при этом главное движение резания является поступательным;
- Долбяки: применяются для зуботочения или зубодолбления шлицев валов, зубчатых колес, других деталей;
- **Шеверы**: инструмент, название которого происходит от английского слова «shaver» (в переводе «бритва»). Он предназначен для чистовой обработки зубчатых колес, которая выполняется методом «скобления»;
- **Абразивный инструмент**: бруски, круги, кристаллы, крупные зерна или порошок абразивного материала. Инструмент, входящий в данную группу, применяется для чистовой обработки различных деталей.

| Оценка | Показатели оценки                                      |
|--------|--------------------------------------------------------|
| 5      | Названы все виды инструмента и дано их описание        |
| 4      | Названо только десять видов инструментов и их описание |
| 3      | Названо только шесть видов инструментов и их описание  |

#### Залание №6

Перечислить основные параметры технологических возможностей учитываемых при выборе оборудования

- 1. Функциональные возможности станка для удовлетворения нужд ТП
- 2. Мощьностные характеристики станка относительно мощьности резания чернового инструмента

3. Габариты рабочей зоны станка и размещения на ней оснастки ТП

|        | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                              |  |  |
|--------|--------------------------------------------------------------------------------------|--|--|
| Оценка | Показатели оценки                                                                    |  |  |
| 5      | Перечислины все параметры                                                            |  |  |
| 4      | Перечислины все параметры но очень косноязычно                                       |  |  |
| 3      | Перечислины все параметры очень косноязычно и приходится ответ тянуть из отвечающего |  |  |

#### Залание №7

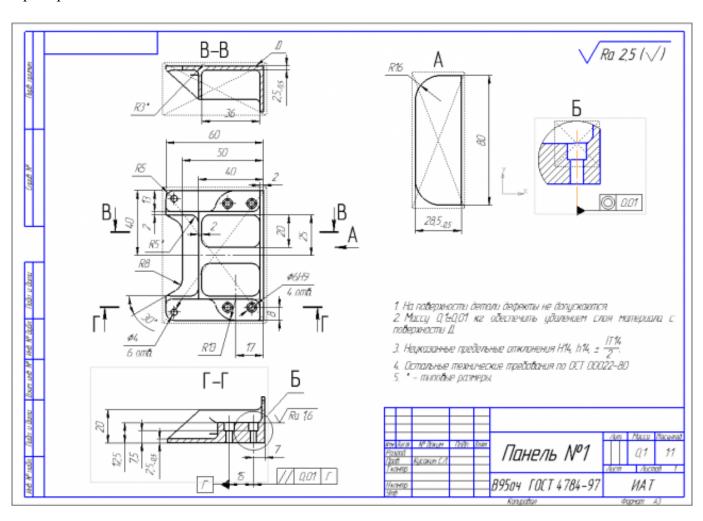
На какие группы делятся приспособления по степени специализации

- 1. универсальные (УП), применяемые при обработке различных деталей путем установки отдельных элементов приспособления на требуемый размер (станочные тиски, токарные патроны, поворотные столы, делительные головки и т. д.);
- 2. переналаживаемые (многопредметные), предназначенные для обработки различных деталей; они могут быть:
- 3. универсально-сборные (УСП) (специальные приспособления, собираемые из стандартных деталей, входящих в комплект этих приспособлений);
- 4. универсально-наладочные (УНП) со сменными нормализованными наладками (тиски со сменными фасонными кулачками и губками, патроны цанговые со сменными кулачками или ложементами базовыми деталями, протяжные патроны со сменными направляющими и т. п.); сюда же относятся групповые приспособления для обработки определенной группы деталей; такие приспособления могут быть со сменными наладками или с постоянными установочными элементами, обеспечивающими обработку разных деталей без переналадки;
- 5. специальные (СП), предназначенные для обработки одной или группы конструктивно и технологически однородных деталей и спроектированные, исходя из определенных условий обработки, формы и размеров заготовки при однажды принятой схеме базирования.

| Оценка | Показатели оценки                                   |
|--------|-----------------------------------------------------|
| 5      | Названы все группы и раскрыты их свойства           |
| 4      | Названо только четыре группы и раскрыты их свойства |
| 3      | Названо только три группы и раскрыты их свойства    |

Пояснить методику расчета режимов резанья с использованием нормативов и САПР

- 1. Произвести выбор инструмента по каталогу
- 2. Взять из каталога инструментов силу резания на выбранный инструмент
- 3. Подставить данные инструмента и силы резания и параметров обработки (подача на зуб, глубина, ширина резания, количество проходов, длна обработки) в калькулятор режимов резания


4. Получить количество оборотов шпинделя об/мин, подачу мм/мин

| Оценка | Показатели оценки                                        |
|--------|----------------------------------------------------------|
| 5      | Ответ дан полный                                         |
| 4      | Ответ не уверенный и не раскрывает всей картины методики |
| 3      | Ответ сбивчевый не точный с поправками и подсказками     |

Вычертиь чертеж по ранее смоделированному КЭМ выдерживая требования ЕСКД.

- 1. Выбор построения видов и разрезов и сечений.
- 2. Нанесение на чертеж осевых линей и других вспомогательных элементов.
- 3. Нанесение на видах размеров.
- 4. Заполнение основной надписи и технических условий детали.
- 5. Нанесение шероховатости и допусков расположения.

# Пример:



| Оценка | Показатели оценки |
|--------|-------------------|
|        |                   |
|        |                   |

| 5 | <ol> <li>Вычерчены изображения и формы детали чертежа согласно ГОСТ 2. 305-68 без ошибок;</li> <li>Нанесены размеры согласно ГОСТ 2307-68 без ошибок;</li> <li>Вписаны технические условия изготовления детали согласно ГОСТ 2309-68 без ошибок;</li> </ol>                                                                                |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | <ol> <li>Вычерчены изображения и формы детали чертежа согласно ГОСТ 2. 305-68 без ошибок;</li> <li>Нанесены размеры с нарушением ГОСТ 2307-68;</li> <li>Вписаны технические условия изготовления детали согласно ГОСТ 2309-68 без ошибок;</li> </ol>                                                                                       |
| 3 | <ol> <li>Вычерчены изображения и формы детали чертежа выполнены с нарушением ГОСТ 2. 305-68 и содержат ошибки;</li> <li>Нанесены размеры с нарушением ГОСТ 2307-68 и имеют отклонения от истинных размеров;</li> <li>Вписаны технические условия изготовления детали выполнены с нарушением ГОСТ 2309-68 и являются не полными;</li> </ol> |

Перечислить порядок разработки УП в САПР (Unigraphics)

#### Порядок выполнения:

- 1. Подготовка модели к использованию в модуле «САМ».
- 2. Создание программы и присвоение ей имени.
- 3. Описание инструмента применяемого для обработки в программы (из практической №4).
- 4. Назначение системы координат геометрии детали и заготовки.
- 5. Определение параметров методов обработки.
- 6. Создание операции обработки
- 7. Генерация пути движения фрезы и визуализация обработки.
- 8. Выполнить Постпроцессирование и получения файла УП.

| Оценка | Показатели оценки                                      |
|--------|--------------------------------------------------------|
| 5      | Названы все этапы разработки                           |
| 4      | Все этапы названы правильно но перепутан порядок       |
| 3      | Пропущин один из этапов разработки и перепутан порядок |

#### Задание №11

Выполнить тестовое задание состоящае из 5 вопросов, выбранных из 20 возможных. На тестирование дается 15 минут (3 минуты на вопрос).

Пример варианта:

# Вопрос 1:

Выберите определение что такое - Числовое программное управление?

| 1 | 0 | управление обработкой заготовки на станке по Управляющей Програние, в которой данные заданы в цифровой форме     |
|---|---|------------------------------------------------------------------------------------------------------------------|
| 2 | 0 | управление обработкой заготовки на станке по Управляющей Програние, в которой данные заданы в аналоговой форме   |
| 3 | 0 | управление обработкой заготовки на станке по Управляющей Програние, в которой данные заданы в произвольной форме |
| 4 | 0 | управление обработкой заготовки на станке вручную рабочим                                                        |
| 5 | • | управление Управляющей Программой осуществляется станком, в которые он данные задает в цифровой форме            |

# Вопрос 2:

Выберите определение что такое - Нулевая точка детали?

| 1 | • | точка на детали, относительно которой заданы ее размеры                                      |
|---|---|----------------------------------------------------------------------------------------------|
| 2 | 0 | точка, принятая за начало координат станка                                                   |
| 3 | 0 | точка на детали, заданная относительно исходной точки                                        |
| 4 | 0 | точка на детали, относительно которой задается нулевая точка станка                          |
| 5 | • | точка, определенная относительно нулевой точки станка и используемая для начала работы по УП |

# Вопрос 3:

Выберите определение что это - ЧПУ, при котором рабочие органы станка перемещаются в заданные точки, причем траектории перемещения не задаются?

| 1 | <b></b> | Числовое программное управление           |
|---|---------|-------------------------------------------|
| 2 | •       | Позиционное ЧПУ                           |
| 3 | 0       | Контурное ЧПУ                             |
| 4 | <b></b> | Групповое ЧПУ станками                    |
| 5 | •       | Система числового программного управления |

# Вопрос 4:

Выберите определение что такое - Инкрементный размер?

| 1 |   | личейный или угловой размер, задаваемый в УП и указывающий положение точки отно­сительно координат точки предыдущего положения рабочего органа станка |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | 0 | личейный или угловой размер, задаваеный в УП и указывающий положение точки относительно причятого нуля отсчета                                        |
| 3 | 0 | личейный или угловой разнер, задаваеный в УП и указывающий положение точки относительно координат исходной точки положения рабочего органа станка     |
| 4 | 0 | личейный или угловой разнер, задаваеный в УП и указывающий положение точки относительно координат точки ноля детали положения рабочего органа станка  |
| 5 | • | линейный или угловой размер, задаваемый в УП и указывающий положение точки относительно координат точки предыдущего положения ноля станка             |

#### Вопрос 5:

Выберите определение что это - Точка, определяющая начало движения инструмента для обработки конкретной заготовки по УП?

| 1 | <b></b> | Нулевая точка станка |
|---|---------|----------------------|
| 2 | 0       | Нулевая точка детали |
| 3 | 0       | Исходная точка       |

| Оценка | Показатели оценки                   |
|--------|-------------------------------------|
| 3      | Выполнены 3 задания из 5 возможных. |
| 4      | Выполнены 4 задания из 5 возможных. |
| 5      | Выполнены 5 задания из 5 возможных. |

# Перечень практических заданий: Задание №1

Построить КЭМ детали с теоретическими обводами по выданному чертежу используя метод построение теоретической поверхности по сечениям.

#### Порядок выполнения:

- 1. Прочитать чертеж.
- Чтение чертежа начинается с основной надписи чертежа в соответствии с требованиями ГОСТ 2.109-73 и ГОСТ 2.302-68;
- далее производится чтение технических требований, предъявляемые к детали (например: детали изготавливает из штамповки, допуски на размеры и т.д.);
- рассмотрение общей шероховатости и вида обработки; выявление (описание) изображений (виды, разрезы, сечения, выносные элементы), представленных на чертеже в соответствии с ГОСТ 2. 305-2008
- 1. Анализ графического состава изображения построений согласно ГОСТ 2.305-2008 с целью выявления необходимых геометрических построений
- 2. Анализ нанесенных размеров согласно ГОСТ 2.307-2001
- 3. Анализировать виды и формы детали чертежа используя ГОСТ 2. 305-68:
- Виды;
- Разрезы;
- Сечения;
- Проекционные связи;

| Оценка | Показатели оценки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5      | <ol> <li>Прочитана основная надпись по предложенному чертежу детали - 2 балла</li> <li>Прочитаны технические условия изготовления детали - 3 балла</li> <li>Названа общая шероховатость и шероховатости отдельных поверхностей, а так же вид обработки - 5 баллов</li> <li>Дано описание назначения и принципа работы детали - 7 баллов.</li> <li>Названы виды, разрезы, сечения, по которым определяются форма и размеры детали согласно ГОСТ 2. 305-2008 – 10 баллов.</li> <li>Расшифрованы условные обозначения резьбы, посадок, взаимного расположения поверхностей и отклонений геометрической формы - 8 баллов.</li> <li>Выявлена геометрическая форма внешнего контура указанной детали при помощи проекционной связи и штриховки сечений, согласно ГОСТ 2.305-68 - 3 балла.</li> <li>Описана геометрическая форма внутреннего контура указанной детали при помощи проекционной связи и штриховки сечений, согласно ГОСТ 2.305-68 – 3 балла.</li> <li>Названы на чертеже габаритные, установочные и монтажные размеры детали – 4 балла.</li> </ol> |
|        | Набрано от 40 до 45 баллов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4      | Набрано от 31 до 39 баллов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3      | Набрано от 13 до 30 баллов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Анализировать чертеж авиационной детали и назвать из каких конструктивно-технологических элементов состоит деталь

| Оценка | Показатели оценки             |
|--------|-------------------------------|
| 5      | Назаваны все элементы детали  |
| 4      | Неназвано два элемента детали |
| 3      | Неназвано три элемента детали |

#### Задание №3

Назвать известные Вам виды заготовок, способы их получения и дать краткую характеристику каждого вида заготовок

# Виды заготовок деталей машин

1. Отливки.

Отливки выполняют из черных и цветных металлов различными способами:

- а) литье в открытые и закрытые (для крупных заготовок) земляные формы в условиях единичного и мелкосерийного производства;
- б) в серийном и массовом производстве применяют машинную формовку по деревянным или металлическим моделям;
- в) литье по выплавляемым и выжигаемым моделям;
- г) литье в оболочковые формы;
- д) литье в кокиль металлические формы;
- е) центробежное литье;
- ж) литье под давлением и др.
- 2. Заготовки из металлокерамики.

Изготавливают из порошков различных металлов или из их смесей с порошками графита, кремнезема, асбеста и т.д. Этот вид заготовки применяется для производства деталей, которые не могут быть изготовлены другими способами – из тугоплавких металлов (вольфрам, молибден, магнитных материалов и пр.), из металлов, не образующих сплавов, из материалов, состоящих из смеси металла с неметаллом (медь – графит) и из пористых материалов.

3. Кованные и штампованные заготовки изготовляют различными способами.

В серийном и массовом производстве изготавливают на штамповочных прессах и молотах в открытых и закрытых штампах.

- 4. Штамповкой заготовок из листового металла получают изделия простой и сложной формы: шайбы, втулки, сепараторы подшипников качения и др.
- 5. Заготовки из круглого проката.

Применяется в случаях, когда масса заготовки из проката превышает массу штамповки не более, чем на 15%.

6. Заготовки из профильного проката.

Применяются в основном в массовом производстве. Во многих случаях этот способ не требует применения механической обработки или ограничивается отделочными операциями.

7. Заготовки из неметаллических материалов.

К ним относятся: пластические массы, резина, текстиль, кожа и др.

| Оценка | Показатели оценки                                                                          |
|--------|--------------------------------------------------------------------------------------------|
| 5      | Названо 7 видов заготовок и способов их получения и дана их краткая характеристика         |
| 4      | Названо 6 видов заготовок и способов их получения и дана их краткая характеристика         |
| 3      | Названо от 3 до 5 видов заготовок и способов их получения и дана их краткая характеристика |

#### Задание №4

Выполнить расчет припусков на заготовку, уклонов и внутренних и наружных радиусов.

# Пример:

- 1. Расчет общих припусков на заготовку аналитическим методом [7], стр. 185 -189 Припуски и допуски на штамповку по ГОСТ 7505-74.
- 1. Выбор углов наклона статистическим методом:

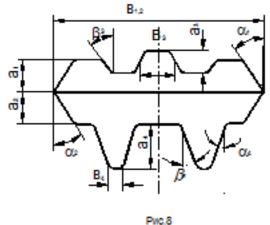



Таблица 1. (смотри рис.8)

| гаелица 1. (смотри рис.s) |        |                                       |                                               |        |  |  |  |  |
|---------------------------|--------|---------------------------------------|-----------------------------------------------|--------|--|--|--|--|
| h/B                       | ı      | на молотах и мех.,<br>з выталкивателя | Штамповка на мех, прессах с<br>выталкивателем |        |  |  |  |  |
|                           | OL.    | β                                     | OL.                                           | β      |  |  |  |  |
| До 1<br>1-3               | 5<br>7 | 7<br>10                               | 2 3                                           | 3<br>5 |  |  |  |  |
| 3-4.5                     | 10     | 12                                    | 5                                             | 7      |  |  |  |  |
| 4.5-6.5                   | 12     | 15                                    | 7                                             | 10     |  |  |  |  |
| Свыше 6.5                 | 15     | 15                                    | 10                                            | 12     |  |  |  |  |

2. Выбор внутренних и наружных радиусов скругления статистическим методом:

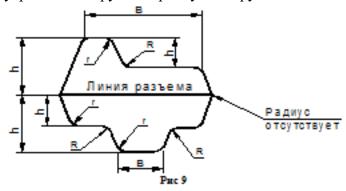



Таблица 2. (смотри рис.9)

| Наме    | гв <u>жж</u> при h/b |     |      | Rв <u>мм</u> при h/b |      |    |
|---------|----------------------|-----|------|----------------------|------|----|
|         | <2                   | 2-4 | >4   | - 2                  | 2-4  | >4 |
| До 15   | 1.5                  | 1.5 | 2    | 4                    | 5    | 8  |
| 15-25   | 1.5                  | 2   | 2.5  | 4                    | 6    | 8  |
| 25-35   | 2                    | 2.5 | 3    | 5                    | 8    | 10 |
| 35-45   | 2.5                  | 3   | 4    | 6                    | 10   | 15 |
| 45-60   | 3                    | 4   | 5    | 8                    | 12.5 | 20 |
| 60-80   | 4                    | 5   | 6    | 10                   | 15   | 25 |
| 80-100  | 5                    | 6   | 8    | 12.5                 | 20   | 35 |
| 100-130 | 6                    | 8   | 10   | 15                   | 25   | 40 |
| 130-170 | 8                    | 10  | 12.5 | 20                   | 30   | 45 |

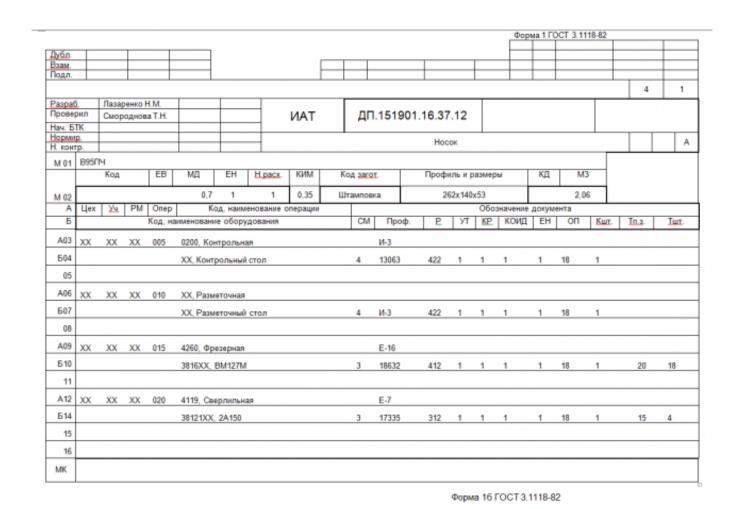
| Оценка | Показатели оценки                      |
|--------|----------------------------------------|
| 5      | Расчет выполнен с точностью до 0.01 мм |
| 4      | Расчет выполнен с точностью до 0.1 мм  |
| 3      | Расчет выполнен с точностью до 1 мм    |

#### Задание №5

Исходя из анализа чертежа выбрать необходимую схему базирования заготовке в приспособлении

Выбрать правильную схему базирования. [7] стр. 45-48

- Установка на три взаимноперпендикулярные плоскости;
- Установка на наружную цилиндрическую поверхность (НЦП) и перпендикулярную ее оси плоскость;
- Установка на внутреннюю цилиндрическую поверхность (ВЦП) (отверстие) и перпендикулярную ее оси плоскость;
- На два отверстия и перпендикулярную их осям плоскость;
- На две цилиндрические поверхности с пересекающимися или перпендикулярными осями;
- На конические поверхности.


| Оценка | Показатели оценки |  |
|--------|-------------------|--|
|--------|-------------------|--|

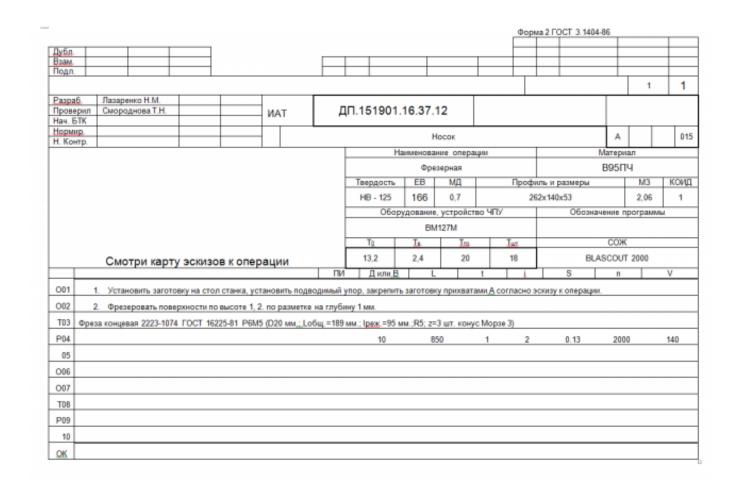
| 5 | <ol> <li>Выбрана правильная схема базирования. [7] стр. 45</li> <li>Выбранная поверхность баз имеет достаточную протяженность.</li> <li>Технологическая база совпадает с измерительной.</li> </ol>       |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | <ol> <li>Выбрана правильная схема базирования. [7] стр. 45</li> <li>Выбранная поверхность баз имеет достаточную протяженность.</li> <li>Технологическая база не совпадает с измерительной.</li> </ol>    |
| 3 | <ol> <li>Выбрана правильная схема базирования. [7] стр. 45</li> <li>Выбранная поверхность баз имеет не достаточную протяженность.</li> <li>Технологическая база не совпадает с измерительной.</li> </ol> |

Выполнить составление маршрутного технологического процесса изготовления авиационной детали.

Порядок заполнения маршрутной карты:

- Универсальные операции;
- Контрольные операции;
- Слесарные операции;
- Операции на оборудовании с ЧПУ;
- Вспомогательные операции;
- Наименование и код операции;
- Наименование и код оборудования, профессии;
- Код условия труда;
- Степень механизации;
- Разряд и форма оплаты труда;
- Код инструкции ТБ;
- Объем партии и т.д.;
- Основные данные обрабатываемой детали;




| Оценка | Показатели оценки                                                                                  |
|--------|----------------------------------------------------------------------------------------------------|
| 5      | Маршрутный техпроцес составлен без ошибок в соответствии с требованиями ЕСКД и ЕСТД                |
| 4      | При составлении маршрутного техпроцеса допущено 7 ошибок в соответствии с требованиями ЕСКД и ЕСТД |
| 3      | Маршрутный техпроцес содержит 10 ошибок в соответствии с требованиями ЕСКД и ЕСТД                  |

Разработать операционную карту для универсальной операци.

Порядок заполнения операционной карты:

- Выполнить описание переходов операции;
- Выполнить выбор инструмента для операции (из практической №4);
- Занести режимы резания на операцию (из практической №4);
- Занести нормы времени на операцию;
- Заполнить параметры переходов;
- Основные данные обрабатываемой детали;

# • Оборудование



| Оценка | Показатели оценки                                                                                                                                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 5      | Все разделы операционной карты заполнены без ошибок в соответствии с требованиями ЕСКД и ЕСТД и ГОСТ 3.1702-79                                   |
| 4      | В разделах операционной карты содержится не более двух ошибок остальное составлено в соответствии с требованиями ЕСКД и ЕСТД и ГОСТ 3.1702-79    |
| 3      | В разделах операционной карты содержится не более четырех ошибок остальное составлено в соответствии с требованиями ЕСКД и ЕСТД и ГОСТ 3.1702-79 |

#### Задание №8

Разработать контрольную карту на универсальную операцию:

#### Параметры заполнения:

- Основные данные обрабатываемой детали;
- Контролируемые параметры;
- Наименование измерительных средств;

| Дубл.<br>Взам.       |            |                              | 1                            |              |                            |                     |     |            | _       |
|----------------------|------------|------------------------------|------------------------------|--------------|----------------------------|---------------------|-----|------------|---------|
| Подл.                |            |                              |                              |              |                            |                     |     |            | $\top$  |
|                      |            |                              |                              |              |                            |                     |     |            | 1       |
| Paspat               | 6 11       | Пазаренко Н.М.               | LAAT                         |              |                            |                     | _   |            |         |
| Прове                |            | Смороднова Т.Н.              | TAN                          | , r          | П.151901.16.37.12          |                     |     |            |         |
| Нач. Б               |            | смороднова т.н.              | _                            |              | 41.101001.10.07.12         |                     |     |            |         |
|                      | ровал      |                              |                              |              | Носок                      |                     | A   |            | 03      |
| Н. кон               | проль      |                              |                              |              | Hocok                      |                     | _ ^ |            | 0.5     |
|                      |            | Наименование                 | операции                     |              | Наименован                 | ие, марка материала |     |            | Ma      |
|                      |            | Контрол                      | ьная                         |              |                            | B95ПЧ               |     |            | 0,7     |
|                      |            | Наименование о               | опулования                   |              |                            |                     |     | Обозначени | TONes   |
|                      |            | Контрольна                   |                              |              |                            |                     |     | Coosnavens | 101101  |
| Р                    | Конт       | ролируемые параметры         | Код средства Т               | 0            | Наименование               | средств ТО          |     | Объём и ПК | To/     |
| 01 (                 |            |                              | Калибр-пробка 8133-0928 Н9 Г | OCT 14810-69 |                            |                     |     |            |         |
| 02 130±0.05; 40±0.05 |            | Контрольное приспособление ( | QП. 151901. 16.37. 12.05.0   | CE.          |                            | $\perp$             |     |            |         |
| 03 [                 | Ra 3,2; Ra | 1,6                          |                              |              | Образцы шероховатости ГОСТ | 9378-93             |     |            | +       |
| 04                   |            |                              |                              |              |                            |                     |     |            | -       |
| 05                   |            |                              |                              |              |                            |                     |     |            |         |
| 06                   |            |                              |                              |              |                            |                     |     |            | _       |
| 07                   |            |                              |                              |              |                            |                     |     |            | _       |
| 80                   |            |                              |                              |              |                            |                     |     |            | $\perp$ |
| 09                   |            |                              |                              |              |                            |                     |     |            | -       |
| 10                   |            |                              |                              |              |                            |                     |     |            | -       |
| 11                   |            |                              |                              |              |                            |                     |     |            | _       |
| $\overline{}$        |            |                              |                              |              |                            |                     |     |            | +       |
| 12                   |            |                              |                              |              |                            |                     |     |            |         |

| Оценка | Показатели оценки                                                                                                                               |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 5      | Все параметры контрольной карты заполнены полностьюи без ошибок в соответствии с требованиями ЕСКД и ЕСТД и ГОСТ 3.1128-93                      |
| 4      | В разделах контрольной карты содержится не более двух ошибок остальное составлено в соответствии с требованиями ЕСКД и ЕСТД и ГОСТ 3.1128-93    |
| 3      | В разделах контрольной карты содержится не более четырех ошибок остальное составлено в соответствии с требованиями ЕСКД и ЕСТД и ГОСТ 3.1128-93 |

Выбирите инструмент по каталогу для черновой, получистовой и чистовой обработки;

### Выбор инструмента для фрезерования

#### 1 Определите тип операции

В соответствии с типом операции:

- Торцевое фрезерование
- Фрезерование уступов
- Профильное фрезерование
- Фрезерование пазов

Подберите наиболее оптимальный инструмент с точки зрения производительности и надежности обработки.

См. стр. J31.

#### 2 Определите группу обрабатываемого материала

Определите, к какой группе обрабатываемости по ISO относится тот материал, который необходимо фрезеровать:

Сталь (Р)

Нержавеющая сталь (М)

Чугун (К)

Алюминий (N)

Жаропрочные и титановые сплавы (S)

Материалы высокой твердости (Н)

См. таблицу соответствия материалов в разделе І.

# 3 Выберите тип фрезы

Выберите шаг зубьев и тип крепления фрезы.

Как первый выбор рекомендуется нормальный шаг зубьев фрезы.

При работе с большими вылетами и в нестабильных условиях следует выбирать крупный шаг зубьев.

При обработке материалов, дающих элементную стружку,

рекомендуется выбирать мелкий шаг зубьев фрезы.

Выберите тип крепления.

#### 4 Подберите режущую пластину

Выберите геометрию передней поверхности пластин в соответствии с операцией:

#### Геометрия L – для чистовой обработки

Когда необходимо снизить усилия резания при легких условиях обработки.

# Геометрия М – для получистовой обработки

Универсальная геометрия для разнообразных условий обработки.

#### Геометрия Н – для черновой обработки

Для тяжелой обработки поверхностей с ковочной или литейной коркой, а также при опасности вибраций.

Выберите пластины из твердого сплава, обеспечивающего оптимальную производительность.

#### 5 Определите начальные режимы обработки

Рекомендуемые начальные значения скоростей резания и подач

Обязательные качественные критерии:

Подбор необходимого инструмента [1] стр.465-467.:

# Фрезерование



# Перечень таблиц – Ориентировочные режимы резания при фрезеровании

| Фреза                      | Обозначение / инструментальный материал / покрытие /<br>вид обработки |              |                                          |      | C.  |
|----------------------------|-----------------------------------------------------------------------|--------------|------------------------------------------|------|-----|
| Цельные фрезь              | ı                                                                     |              |                                          |      |     |
| Дисковые фрезы             | HSS-Co5                                                               |              |                                          | 8.7  | 462 |
|                            | УНМ (с покрытием)                                                     |              |                                          | 8.8  | 484 |
| Торцовая<br>насадная фреза | HSS-Co (без покрытия, с покры                                         | ытием)       | _                                        | 8.9  | 466 |
| концевал фреза             | HJJJ / I W                                                            | черновал     | контурное фрезерование                   | 0.10 | 770 |
|                            | (без покрытия,<br>с покрытием)                                        | обработка    | Пазы / уступы                            | 8.11 | 476 |
|                            |                                                                       |              | Копирование                              | 8.12 | 482 |
|                            |                                                                       |              | Врезное/циркулярное<br>фрезерование      | 8.13 | 488 |
|                            |                                                                       | Получистовая | Контурное фрезерование                   | 8.14 | 494 |
|                            |                                                                       | обработка    | Копирование                              | 8.15 | 500 |
|                            | Обдирочная фреза РМ МТС                                               | 191075       | Пазы / уступы                            | 8.16 | 506 |
|                            | (с покрытием)                                                         |              | Контурное фрезерование                   |      |     |
|                            | Фреза для чистовой обработки<br>SPM HPC (с покрытием)                 | 191632       | Периферийное<br>фрезерование             | 8.17 | 508 |
|                            | Обдирочная фреза SPM MTC                                              | 192852       | Пазы / уступы                            | 8.18 | 510 |
|                            | (с покрытием)                                                         | 192855       | Контурное фрезерование<br>(периферийное) | 8.19 | 512 |
|                            |                                                                       | 192895       | Пазы / уступы                            | 8.20 | 514 |
|                            |                                                                       |              | Контурное фрезерование                   | 8.21 | 516 |

)

# Описание типов инструмента

| Тип | Примеры                                 | Применение инструмента данного типа                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N   | *************************************** | Чистовая фреза для работы при малой и средней глубине резания.<br>Тип N используется для обработки самых разных материалов (сталь,<br>чугун, цветные или лёпкие металлы, а также пластмассы)<br>стандартной тейддости и прочности. Тип N обеспечивает очень<br>высокое качество поверхности.                                                                                                                               |
| NF  |                                         | Фрезы со стружкопомателями, которые снижают силу резания<br>и облегчают удаление стружки (обдирочный профилы. Тип NF<br>используется для работы при любых глубинах резания (сталь, чугун,<br>цветные или пёлкие металлы, а также пластиассы). Чистота<br>обработки поверхности во многих случаях является приемпемой.                                                                                                      |
| NR  |                                         | Обдирочная фреза со стандартным шагом зубьев для работы при<br>средних и больших глубинах резания. Обдирочный профиль<br>обеспечивает высокую производительность за единицу времени.<br>Тип NR используется для обработки самых разных материалов<br>(сталь, чугун, цветные или лёгкие металлы, а также пластмассы)<br>с пределом прочности не выше среднего. Как правило, требуется<br>дополнительная чистовая обработка. |
| W   |                                         | Чистовая фреза для работы при малой и средней глубиной резания.<br>Тип W предназначен специально для обработки резанием мялких,<br>вязких и/или длиностружечных материалов, например,<br>алюминивых и медных сплавов, а также пластмасс.<br>Тип W обеспечивает очень высокое качество поверхности.                                                                                                                         |
| WF  |                                         | Фрезы со стружколомателями, которые снижают силу резания<br>и облегчают удаление стружки (обдирочный профиль). Тип WF<br>используется для работы при любых глубинах резания при<br>обработке мялих, влаких и/или дличностружечных материалов,<br>например, алюмичиевых и медных сплавов, а также пластмасс.<br>Чистота обработки поверхности во многих случаях является<br>приемлемой.                                     |
| WR  |                                         | Обдирочная фреза со стандартным шагом зубьев для работы<br>при средних и больших глубинах резания. Обдирочный профиль<br>обеспечивает высокую производительность за единицу времени.<br>Тип WR предназначен для обработки мялоки, вязики ийли длинно-<br>стружечных материалов, например, алюминиевых и медных<br>сплавов, а также пластмасс. Как правило, требуется дополнительная<br>чистовая обработка.                 |
| Н   |                                         | Чистовая фреза для работы при малой и средней глубиной резания.<br>Тип Н предназначен специально для обработки резанием твёрдых<br>и/или короткостружечных материалов, например, сталей (в том<br>числе закалённых) и чугуна. Тип Н обеспечивает очень высокое<br>качество поверхности.                                                                                                                                    |
| HF  |                                         | Фрезы со стружкопомателями, которые снижают силу резания<br>и облегчают удаление стружки (обдирочный профиль). Тип НЕ<br>используется для работы при любых глубинах резания при<br>обработие твёрдых ийли короткоструженных материалов,<br>например, стали и чугуна. Чистота обработки поверхности во многих<br>случаях является приемлемой.                                                                               |
| HR  | 0                                       | Обдирочная фреза со стандартным шагом зубьев для работы<br>при средник и больших глубинах резания. Обдирочный профиль<br>обеспечивает высокую производительность за единицу времени.<br>Тип НК предназначен для обработих твёрдых и/или коротко-<br>стружечных материалов, например, стали и чугуна. Как правило,<br>требуется дополнительная чистовая обработка.                                                          |

435



Выбор получистового инструмента в 1.5 раза больше чистового (до ближайшего по каталогу);



Выбор чистового инструмента по минимальному внутреннему радиусу на детали. При выполнении обкатки при чистовой обработке, диаметр инструмента может быть меньше номинального на 1-2мм;

|        | noto na i zmm,                                                                                 |
|--------|------------------------------------------------------------------------------------------------|
| Оценка | Показатели оценки                                                                              |
| 5      | Выбор инструмена выполнен на все типы обработки (черновой, получистовой и чистовой обработки). |
| 4      | Выбор инструмена выполнен на два типа обработки (черновой, получистовой и чистовой обработки). |
| 3      | Выбор инструмена выполнен на один тип обработки (черновой, получистовой и чистовой обработки). |

# Задание №10

Рассчитаться режимы резания для черновой, получистовой и чистовой обработки используя калькулятор режимов резания;

Пример расчета режимов резания на 1 инструмент:

Проверка правильности расчета режимов резания при обработке . (глубина врезания, подача на зуб, ширина обработки, подача мм. в минуту, оборотов в минуту) для каждого инструмента;

| Оценка | Показатели оценки                                                                                                    |
|--------|----------------------------------------------------------------------------------------------------------------------|
| 5      | Расчет режимов резания выполнен на все типы обработки (черновой, получистовой и чистовой обработки) или инструменты. |
| 4      | Расчет режимов резания выполнен на два типа обработки (черновой, получистовой и чистовой обработки) или инструмента. |
| 3      | Расчет режимов резания выполнен на один тип обработки (черновой, получистовой и чистовой обработки) или инструмента. |

#### Задание №11

Оформить технологический процесс

| Оценка | Показатели оценки                                                                                                         |
|--------|---------------------------------------------------------------------------------------------------------------------------|
| 5      | Технологический процесс выполнен в соответствии с требованиями ЕСКД и ЕСТД и ГОСТ 3.1128-93                               |
| 4      | Технологический процесс выполнен с небольшими недоработками но в соответствии с требованиями ЕСКД и ЕСТД и ГОСТ 3.1128-93 |
| 3      | Технологический процесс выполнен с ошибками но в соответствии с требованиями ЕСКД и ЕСТД и ГОСТ 3.1128-93                 |

#### Задание №12

Провести контроль УП по следующим критериям.

Визуальный контроль обрабаботки:

- 1. Зарезы на детали;
- 2. Не до обработка детали;
- 3. Обработка наклонных поверхностей снизу в верх;
- 4. Отсутствие столкновений при обходах и переходах;
- 5. Врезание в деталь на рабочем ходу;
- 6. Врезания в карманы, полки и уступы с крайних слоев заготовки от середины к ребрам или стенкам;

- 7. Врезания в колодцы и окна по спирали от середины к краю;
- 8. Врезание в колодцы и окна в заранее засверленные отверстия в середине;
- 9. Обработка внутреннего контура против часовой стрелки;
- 10. Обработка наружнего контура по часовой стрелки;
- 11. Обработку отверстий сверлением. Сперва центровочным сверлом, потом сверлим основным.

12. Глубокие отверстия сверлятся методом обработки глубоких отверстий в несколько этапов.

| Оценка | Показатели оценки                            |
|--------|----------------------------------------------|
| 5      | При отсутствии замечаний по всем 12 пунктам. |
| 4      | Есть замечания не более чем по двум пунктам. |
| 3      | Есть замечания не более чем по трем пунктам. |

#### Задание №13

Использован пакет САПР ("Компас", Inventor) для построения чертежа

| Оценка | Показатели оценки                                                                                                                        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|
| 5      | Задействованны команды ассоциативных связей для построение видов и разрезов.                                                             |
|        | Использованны команды простановки размеров.                                                                                              |
|        | Использован редактор технических условий и задействованны шаблоны.                                                                       |
| 4      | Задействованны команды ассоциативных связей для построение видов и разрезов.                                                             |
|        | Использованны команды простановки размеров но отдельные размеры изменены вручную.                                                        |
|        | Использован редактор технических условий но не совсеми параметрами.                                                                      |
| 3      | Задействованны команды ассоциативных связей для построение видов и разрезов но некоторые разбиты на элементы и нарушена связь с моделью. |
|        | Использованны команды простановки размеров но отдельные размеры прописаны вручную.                                                       |
|        | Редактор технических условий не использован.                                                                                             |