

Министерство образования Иркутской области Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Иркутский авиационный техникум»

УТВЕРЖДАЮ

Директор

ГБНОУИО «ИАТ»

//Якубовский А.Н.

«31» мая 2018 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

ОП.07 Технологическое оборудование

специальности

15.02.08 Технология машиностроения

Рассмотрена цикловой комиссией ТМ №15 от 23 мая 2018 г.

Председатель ЦК

/С.Л. Кусакин /

№	Разработчик ФИО
1	Кабанова Марина Анатольевна
2	Кусакин Святослав Львович

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Область применения фонда оценочных средств (ФОС)

ФОС по дисциплине является частью программы подготовки специалистов среднего звена по специальности 15.02.08 Технология машиностроения

1.2. Место дисциплины в структуре ППССЗ:

ОП.00 Общепрофессиональный цикл.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины

В результате освоения дисциплины обучающийся должен	№ дидакти ческой единицы	Формируемая дидактическая единица
Знать	1.1	классификацию и обозначения металлорежущих станков;
	1.2	назначения, область применения, устройство, принципы работы, наладку и технологические возможности металлорежущих станков, в т.ч. с числовым программным управлением (ЧПУ);
	1.3	назначение, область применения, устройство, технологические возможности роботехнических комплексов (РТК), гибких производственных модулей (ГПМ), гибких производственных систем (ГПС)
Уметь	2.1	читать кинематические схемы;
	2.2	осуществлять рациональный выбор технологического оборудования для выполнения технологического процесса;

1.4. Формируемые компетенции:

ОК.1 Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

ОК.2 Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и

качество.

- ОК.3 Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- OK.4 Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК.5 Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК.6 Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК.7 Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.
- ОК.8 Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК.9 Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
- ПК.1.1 Использовать конструкторскую документацию при разработке технологических процессов изготовления деталей.
- ПК.1.2 Выбирать метод получения заготовок и схемы их базирования.
- ПК.1.3 Составлять маршруты изготовления деталей и проектировать технологические операции.
- ПК.1.4 Разрабатывать и внедрять управляющие программы обработки деталей.
- ПК.1.5 Использовать системы автоматизированного проектирования технологических процессов обработки деталей.
- ПК.2.1 Участвовать в планировании и организации работы структурного подразделения.
- ПК.2.2 Участвовать в руководстве работой структурного подразделения.
- ПК.2.3 Участвовать в анализе процесса и результатов деятельности подразделения.
- ПК.3.1 Участвовать в реализации технологического процесса по изготовлению деталей.
- ПК.3.2 Проводить контроль соответствия качества деталей требованиям технической документации.

2. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

2.1 Текущий контроль (ТК) № 1

Тема занятия: 2.4.2. Настройка универсальных делительных головок.

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 1.1 классификацию и обозначения металлорежущих

станков;

Занятие(-я):

1.1.1.Введение в дисциплину.

- 1.1.2.Классификация станков по степени точности. Обозначение металлообрабатывающих станков.
- 1.1.3.Классификация станков по степени точности. Обозначение металлообрабатывающих станков.
- 1.1.4. Классификация движений в станках. Основные движения (главные движения резания и движения подачи), вспомогательные движения.
- 1.2.1.Обозначение кинематических элементов станков. Условные графические обозначения для кинематических схем.
- 1.2.2. Передаточное отношение в станках.

Задание №1

Необходимо дать формально-логическое объяснение на 5-ть вопросов из возможных 20-и.

- 1. На сколько групп делятся станки по виду обработки?
- 2. На сколько типов делится каждая группа станков?
- 3. Какие бывают группы станков?
- 4. На какие типы делится группа станков?
- 5. На какие степени делятся станки по специализации?
- 6. На какие степени делятся станки по точности?
- 7. На какие степени делятся станки по массе?
- 8. На какие степени делятся станки по виду выполняемых работ и применяемых режущих инструментов?
- 9. Принцип расшифровки марки станка?
- 10. Что значит дополнительна кодировка для станков с ЧПУ?
- 11. Как маркируется класс точности станка?
- 12. Расшифровать марку станка 6Б75В
- 13. Расшифровать марку станка 1А616Ф3
- 14. Расшифровать марку станка 265ПМФ2
- 15. Как обозначаются специальные станки (на примере)?
- 16. Как указывается дополнительная степень автоматизации?
- 17. Что обозначает вторая буква в маркировке станка?
- 18. Что такое Направляющие станков?

19. Что такое Направляющие скольжения?
20. Что такое Направляющие качения?

Оценка	Показатели оценки

Дано формально-логическое объяснение на все 5-ть вопросов. 1. Какие бывают группы станков? Ответ: 1) токарные; 2) сверлильные и расточные; 3) шлифовальные, полировальные, доводочные и заточные; 4) специальные; 5) зубо- и резьбообрабатывающие; 6) фрезерные; 7) разрезные; 8) строгальные, долбежные, протяжные; 9) разные. 2. На какие типы делится группа станков? Ответ: 1) вертикально-сверлильные, 2) одношпиндельные полуавтоматы, 3) многошпиндельные полуавтоматы, 4) координатно-расточные, 5) радиально-сверлильные, 6) горизонтально-расточные, 7) алмазно-расточные, 8) горизонтально-сверлильные, 9) разные сверлильные. 3. Принцип расшифровки марки станка? Ответ: Обозначение модели серийно выпускаемых станков состоит из сочетания трех или четырех цифр, иногда с добавлением букв. Первая цифра обозначает номер группы по классификационной таблице, вторая цифра указывает тип станка. Третья, а иногда и четвертая цифры характеризуют основные параметры станка, различные для станков разных групп. Так, для фрезерных станков - это типоразмер стола, для поперечнострогальных и долбежных - максимальный ход ползуна и т. д. Буква, если она находится между цифрами, указывает на модернизацию базовой модели станка. Буква после цифр обозначает модификацию или класс точности станка. Например, вертикально-сверлильный станок модели 2Н150: здесь 2 сверлильный, Н - модернизация, 1- вертикальный, 50 наибольший условный диаметр сверления. 4. Как маркируется класс точности станка? Ответ: Кроме того, в обозначении станка после третьей (четвертой) цифры буквой указывается класс точности данной модели: П — повышенной точности, В — высокой точности, А особо высокой точности, С — особо точный (при нормальной точности станка обозначение его класса Н опускается). 5. Направляющие качения? Ответ: Направляющие качения имеют высокую долговечность, характеризуются небольшим трением, причем коэффициент трения практически не зависит от скорости движения. В качестве тел качения используют ролики. Предварительный натяг повышает жесткость направляющих в 2...3 раза, для создания натяга используют регулирующие устройства. 4 Дано формально-логическое объяснение на 4-и из 5-ти вопросов.

Дидактическая единица: 1.2 назначения, область применения, устройство, принципы работы, наладку и технологические возможности металлорежущих станков, в т.ч. с числовым программным управлением (ЧПУ);

Занятие(-я):

- 1.3.1. Методы повышения надежности и точности технологического оборудования. Модернизация технологического оборудования. Контрольная работа на тему: «Общие сведения о металлообрабатывающих станках».
- 2.1.1. Базовые детали станков. Назначение станины, направляющих, шпинделя. Классификация приводов станков.
- 2.1.2.Передачи, применяемые в станках. Планетарная передача с цилиндрическими и коническими колесами.
- 2.1.3. Муфты и тормозные устройства. Их назначение .
- 2.1.4. Реверсивные механизмы. С цилиндрическими и коническими колесами. Гидравлическое и электрическое реверсирование.
- 2.2.1.Классификация токарных станков.
- 2.2.2.Токарно-винторезные станки. Назначение, технические характеристики.
- 2.2.3. Перспективы развития токарных станков с ЧПУ. Токарные станки с ЧПУ.
- 2.2.4.Описание устройства и принципов работы основных узлов токарных станков с ЧПУ мод. 16А20Ф3.
- 2.3.1.Классификация фрезерных станков.
- 2.3.2.Приспособления, расширяющие технологические возможности фрезерных станков.
- 2.4.1. Принцип действия делительных головок. Непосредственное деление, простое деление, дифференциальное деление.

Задание №1

Необходимо дать формально-логическое объяснение на 5-ть вопросов из возможных 17-и.

- 1. Что такое Базовые детали?
- 2. Что такое Приводы и преобразователи для станков с ЧПУ?
- 3. Что такое Привод подачи для станков с ЧПУ?
- 4. Что такое Привода главного движения для станков с ЧПУ?
- 5. Что такое Преобразователи частоты для управления асинхронными двигателями?
- 6. Что такое Шпиндели?
- 7. Что такое Опоры шпинделя?
- 8. Что такое Привод позиционирования?
- 9. Что такое Вспомогательные механизмы станков с ЧПУ?
- 10. Что такое Устройства автоматической смены инструмента?
- 11. Что такое Револьверная головка?
- 12. Дать краткое определение выбора токарного оборудования.

- 13. Раскрыть основные пораметры подбора технологического оборудования (станков).
- 14. Виды делительных головок.
- 15. Настройка делительной головки не непосредственное деление.
- 16. Произвести выбор оборудования по заданным габаритам токарной детали и ее точностью изготовления из данных станков.
- 17. Произвести выбор оборудования по заданным габаритам фрезерной детали и ее точностью изготовления из данных станков.

Оценка	Показатели оценки
5	Дано формально-логическое объяснение на все 5-ть вопросов.
	1. Что такое Базовые детали?
	Ответ: Базовые детали (станины, колонны, салазки). Столы,
	например, конструируют коробчатой формы с продольными и
	поперечными ребрами. Базовые детали изготавливают литыми
	или сварными. Наметилась тенденция выполнять такие детали из
	полимерного бетона или синтетического гранита, что в еще
	большей степени повышает жесткость и виброустойчивость
	станка.
	2. Что такое Привод подачи для станков с ЧПУ?
	Ответ: Привод подачи для станков с ЧПУ. В качестве привода
	используют двигатели, представляющие собой управляемые от
	цифровых преобразователей синхронные или асинхронные
	машины. Бесколлекторные синхронные (вентильные) двигатели
	для станков с ЧПУ изготавливают с постоянным магнитом на
	основе редкоземельных элементов и оснащают датчиками
	обратной связи и тормозами. Асинхронные двигатели применяют
	реже, чем синхронные. Привод движения подач характеризуется
	минимально возможными зазорами, малым временем разгона и
	торможения, небольшими силами трения, уменьшенным
	нагревом элементов привода, большим диапазоном
	регулирования. Обеспечение этих характеристик возможно
	благодаря применению шариковых и гидростатических винтовых
	передач, направляющих качения и гидростатических
	направляющих, беззазорных редукторов с короткими
	кинематическими цепями и т.д.
	3. Что такое Револьверная головка?
	Ответ: Револьверная головка - это наиболее простое устройство
	смены инструмента: установку и зажим инструмента
	осуществляют вручную. В рабочей позиции один из шпинделей
	приводится во вращение от главного привода станка.

	Револьверные головки устанавливают на токарные, сверлильные,
	фрезерные, многоцелевые станки с ЧПУ; в головке закрепляют от
	4 до 12 инструментов.
	4. Дать краткое определение выбора токарного оборудования.
	Ответ: Выбор токарных станков с ЧПУ проводится в
	зависимости от габаритных размеров и массы заготовок с
	корректировкой на точностные возможности оборудования.
	5. Раскрыть основные пораметры подбора технологического
	оборудования (станков).
	Ответ: 1. габаритными размерами заготовок и размерами
	обработки; 2. мощностью, необходимой на резание; 3.
	производительностью и себестоимостью в соответствии с типом
	производства; 4. возможностью приобретения и ценой станка; 5.
	удобством и безопасностью работы станка
4	Дано формально-логическое объяснение на 4-и из 5-и вопросов.
3	Дано формально-логическое объяснение на 3-и из 5-и вопросов

Дидактическая единица: 2.2 осуществлять рациональный выбор технологического оборудования для выполнения технологического процесса; **Занятие(-я):**

2.2.4.Описание устройства и принципов работы основных узлов токарных станков с ЧПУ мод. $16A20\Phi3$.

Задание №1

Показать умение рационального выбора оборудования для выполнения технологического процесса. (конкретизировать для 1 варианта)

Оценка	Показатели оценки
5	Оборудование выбрано в соответствии с требованиями технологического процесса и отвечает всем заданным параметрам.
4	Оборудование выбрано в соответствии с требованиями технологического процесса и отвечает заданным параметрам, но допущены некоторые неточности
3	Оборудование выбрано в соответствии с требованиями технологического процесса.

2.2 Текущий контроль (ТК) № 2

Тема занятия: 3.1.5.Описание устройства и принципов работы основных узлов комплекса модели ACBP-041

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 1.3 назначение, область применения, устройство, технологические возможности роботехнических комплексов (РТК), гибких производственных модулей (ГПМ), гибких производственных систем (ГПС) **Занятие(-я):**

3.1.4.Описание устройства и принципов работы основных узлов комплекса модели ACBP-041.

Задание №1

Дать формально-логическое объяснение на 5-ть вопросов из возможных 7-и.

- 1. Раскрыть понятие робототехнических комплексов (РТК) и область их применения. Технологические возможности.
- 2. Раскрыть понятие возможности. гибких производственных систем (ГПС) и область их применения. Технологические возможности.
- 3. На какие подсистемы может разделятся ГПС?
- 4. Как ранжируются подсистемы ГПС по степени первоочередности разработки?
- 5. Как ГПС классифицируется по организационным признакам?
- 6. Раскрыть понятие гибких производственных модулей (ГПМ) и область их применения. Технологические возможности.
- 7. Прочитать кинематическую схему сверлильно-расточного станка КС12 500

Оценка	Показатели оценки
5	Дано формально-логическое объяснение на все 5-ть вопросов.
	1 Раскрыть понятие робототехнических комплексов (РТК) и
	область их применения. Технологические возможности.
	Ответ: Робототехнические комплексы - гибкие производственные
	системы, в которых автоматически действующие машины,
	устройства, приспособления реализуют всю технологию
	производства, за исключением функции управления и
	контроля,осуществляемых человеком. Промышленный робот
	является универсальным устройством, позволяющим
	автоматизировать любой производственный процесс.
	Современные промышленные роботы позволяют совершать
	сложнейшие траектории движений с высочайшей точностью;
	роботможет работать во вредных для человеческого организма
	средах длительное время. Управление
	роботизированнымикомплексами производится с помощью
	программного обеспечения, созданного под конкретные задачи
	производства и позволяющего легко программировать сложные
	многоуровневые производственные процессы через удобный
	пользовательский интерфейс.

2. На какие подсистемы может разделятся ГПС? Ответ: 1. Оборудование с ЧПУ, гибкие производственные модули, робототехнические комплексы, универсальное оборудование. 2. Автоматизированная транспортно-складская система. 3. АСУП — автоматизированная система управления производством. 4. АСУТП — автоматизированная система управления технологическим процессом. 5. Автоматизированная система технологической подготовкой производства. 6. Автоматизированная система инструментального обеспечения 7. Система автоматизированного контроля. 8. САПР — автоматизированная система проектирования. 9.

Автоматизированная система научных исследований.

3. Раскрыть понятие возможности. гибких производственных систем (ГПС) и область их применения. Технологические возможности.

Ответ: ГПС – совокупность в разных сочетаниях оборудования с ЧПУ, робототизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение заданного интервале времени, обладающую свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик. ГПС связаны с изготовлением конструктивно и технологически однородной продукции в подетально- специализированных (предметно-замкнутых) производственных подразделениях. ГПС – не есть нечто конкретное, одинаковое во всех производствах. Это обобщенное понятие самых различных по своему уровню автоматизации производственных систем. Главный принцип организации ГПС – параллельность и непрерывность выполнения различных производственных процессов.

4. Как ранжируются подсистемы ГПС по степени первоочередности разработки?

Ответ: 1 уровень — включает 1. Оборудование с ЧПУ, гибкие производственные модули, робототехнические комплексы, универсальное оборудование. 2. Автоматизированная транспортно-складская система. 3. АСУП — автоматизированная система управления производством.

2 уровень – включает 1. Оборудование с ЧПУ, гибкие производственные модули, робототехнические комплексы, универсальное оборудование. 2. Автоматизированная

	транспортно-складская система. 3. АСУП – автоматизированная
	система управления производством. 4. АСУТП –
	автоматизированная система управления технологическим
	процессом. 5. Автоматизированная система технологической
	подготовкой производства.
	3 уровень – включает 1. Оборудование с ЧПУ, гибкие
	производственные модули, робототехнические комплексы,
	универсальное оборудование. 2. Автоматизированная
	транспортно-складская система. 3. АСУП – автоматизированная
	система управления производством. 4. АСУТП –
	автоматизированная система управления технологическим
	процессом. 5. Автоматизированная система технологической
	подготовкой производства. 6. Автоматизированная система
	инструментального обеспечения 7. Система автоматизированного
	контроля.
	4 уровень – включает 1. Оборудование с ЧПУ, гибкие
	производственные модули, робототехнические комплексы,
	универсальное оборудование. 2. Автоматизированная
	транспортно-складская система. 3. АСУП – автоматизированная
	система управления производством. 4. АСУТП –
	автоматизированная система управления технологическим
	процессом. 5. Автоматизированная система технологической
	подготовкой производства. 6. Автоматизированная система
	инструментального обеспечения 7. Система автоматизированного
	контроля. 8. САПР – автоматизированная система
	проектирования. 9. Автоматизированная система научных
	исследований.
	5. Как ГПС классифицируется по организационным признакам?
	Ответ: ГАЛ (линия), ГАУ (участок), ГАЦ (цех) как совокупность
	ГАУ.
4	Необходимо дать формально-логическое объяснение на 4-и из
	5-ти вопросов.
3	Необходимо дать формально-логическое объяснение на 4-и из
	5-ти вопросов.
1	

Дидактическая единица: 2.1 читать кинематические схемы; **Занятие(-я):**

2.4.4.Описание устройства и принципов работы основных узлов фрезерного станка с ЧПУ DMC 635V.

Задание №1

Оценка	Показатели оценки
5	Прочитана кинематическая схема со всеми пояснениями.
	Главное движение осуществляется от двигателя постоянного тока
	Ml, движение а которого передается посредством ременной
	передачи 0 105 - 0 132 (при выключению муфте перебора MI).
	Через передачи 37 - 77, 40 - 65 на шпиндель. При включенной
	муфт движение передается ременной передачей 0 106 - 0 72,
	обеспечивая верхний диапазо частот вращений. Частота
	вращения устанавливается двигателем. Включение муфт
	перебора осуществляется от двигателя постоянного тока М2,
	через червячную передачу 1 100, предохранительную муфту Мп,
	реечное колесо 36 и рейку связанную с муфтой. Ориентация
	шпинделя производится в следующем порядке: Шпиндель
	вращается на малых оборотах по часовой стрелке. Включается
	электромагнит перемещая рычаг 4 до упора в диск 2, жестко
	связанный со шпинделем. Рычаг через штс 1 включает
	микропереключатель 5, который выдает команду на реверс
	шпинделя, при это рычаг 4 упирается в вырез диска 2 и
	переключатель 6 выдает команду « Шпиндел сориентирован »
	для извлечения инструмента. При разориентации снимается
	питание электромагнита и рычаг 4 под действием пружины
	отходит от диска, срабатывав переключатель 7, подавая команду
	« Шпиндель разориентирован ». Перемещение шпиндельной
	головки осуществляется от двигателя постоянного тока М
	движение от которого передается через передачи 0 90 - 0 90, 2 -
	30 на винт - гайк качения с шагом Р = 10. Перемещение
	отслеживается сельсинами СС 1 (десятк миллиметров), СС 2 (
	единицы), СС 3 (десятые доли). Движения на сельсины
	снимаете с винта через винтовые колеса 36 - 36 и ряд передач.
	Перемещение пиноли производится от двигателя М4, через
	передачи 1 - 40, 46 - 7 движение передается на рейку пиноли 51.
	Одновременно движение передается через 34 50 на диск с
	кулачками 8, от которых срабатывают переключатели 9, 10, 11,
	12, отслежива перемещение пиноли. Перемещение транспортера
	производится двигателем М5, через передачи 1 - 60, 17 - 11
	движение передается на ведущую звездочку 12, которая
	находится в зацеплении с стержнями секций транспортера.
	Движение со звездочками передается через 192 - 100, 3 - 96 на
	сельсин СС 5 и через 23 - 92 на ось, которыми отслеживаются

_	
положе	ние секци Переключатели 14 и 14 являются
огранич	нителями хода. При выходе нужной секции в зон
шпинде	еля сельсин дает команду на срабатывание механизма
точного	о останова. При это получает питание электромагнит 15
или 19,	поворачивается рычаг 16 с качалкой I Качалка своим
пальцем	м, упираясь в выступ корпуса механизма останова,
образуе	ст жесткий упор, на который и находит упор транспортера,
точно ф	риксируя секцию инструментом относительно оси
шпинде	еля. Переключатели 20 и 21 дают команду н реверь
транспо	ортера, а переключатели 22 и 23 фиксируют положение на
упоре. 1	Перемещение стола осуществляется от двигателя
постоян	ного тока Ml (рис.3). Движени от двигателя через
передач	ну 3-40 передается на шариковый винт с шагом H = 10.
Переме	щение отслеживается поразрядно сельсинами СС1СС4,
движен	ия на которы снимается с винта и передается через ряд
зубчать	их передач. Привод салазок выполне идентично.
Тахоген	нераторы ТГ 1, ТГ2 выполняют функцию датчиков
скорост	ти, для получения жестких механических характеристик
работы	двигателей.
Кинема	тическая схема прочитана, но допущены некоторые
неточно	ости в передачах.
Кинема	тическая цепь прочитана более 50%

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

№ семестра	Вид промежуточной аттестации
2	Дифференцированный зачет

Дифференцированный зачет может быть выставлен автоматически по	
результатам текущих контролей	
Текущий контроль №1	
Текущий контроль №2	

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Проверочная работа по вариантам: три теоретических задания и одно практическое задание

Дидактическая единица для контроля:

1.1 классификацию и обозначения металлорежущих станков;

Задание №1 (из текущего контроля)

Необходимо дать формально-логическое объяснение на 5-ть вопросов из возможных 20-и.

- 1. На сколько групп делятся станки по виду обработки?
- 2. На сколько типов делится каждая группа станков?
- 3. Какие бывают группы станков?
- 4. На какие типы делится группа станков?
- 5. На какие степени делятся станки по специализации?
- 6. На какие степени делятся станки по точности?
- 7. На какие степени делятся станки по массе?
- 8. На какие степени делятся станки по виду выполняемых работ и применяемых режущих инструментов?
- 9. Принцип расшифровки марки станка?
- 10. Что значит дополнительна кодировка для станков с ЧПУ?
- 11. Как маркируется класс точности станка?
- 12. Расшифровать марку станка 6Б75В
- 13. Расшифровать марку станка 1А616Ф3
- 14. Расшифровать марку станка 265ПМФ2
- 15. Как обозначаются специальные станки (на примере)?
- 16. Как указывается дополнительная степень автоматизации?
- 17. Что обозначает вторая буква в маркировке станка?
- 18. Что такое Направляющие станков?
- 19. Что такое Направляющие скольжения?
- 20. Что такое Направляющие качения?

Оценка	Показатели оценки
5	Дано формально-логическое объяснение на все 5-ть вопросов.
	1. Какие бывают группы станков?
	Ответ: 1) токарные; 2) сверлильные и расточные; 3)
	шлифовальные, полировальные, доводочные и заточные; 4)
	специальные; 5) зубо- и резьбообрабатывающие; 6) фрезерные; 7)
	разрезные; 8) строгальные, долбежные, протяжные; 9) разные.
	2. На какие типы делится группа станков?
	Ответ: 1) вертикально-сверлильные, 2) одношпиндельные
	полуавтоматы, 3) многошпиндельные полуавтоматы, 4)
	координатно-расточные, 5) радиально-сверлильные, 6)
	горизонтально-расточные, 7) алмазно-расточные, 8)
	горизонтально-сверлильные, 9) разные сверлильные.
	3. Принцип расшифровки марки станка?
	Ответ: Обозначение модели серийно выпускаемых станков
	состоит из сочетания трех или четырех цифр, иногда с
	добавлением букв. Первая цифра обозначает номер группы по
	классификационной таблице, вторая цифра указывает тип станка.
	Третья, а иногда и четвертая цифры характеризуют основные
	параметры станка, различные для станков разных групп. Так, для
	фрезерных станков - это типоразмер стола, для поперечно-
	строгальных и долбежных - максимальный ход ползуна и т. д.
	Буква, если она находится между цифрами, указывает на
	модернизацию базовой модели станка. Буква после цифр
	обозначает модификацию или класс точности станка. Например,
	вертикально-сверлильный станок модели 2Н150: здесь 2 -
	сверлильный, Н - модернизация, 1- вертикальный, 50 -
	наибольший условный диаметр сверления.
	4. Как маркируется класс точности станка?
	Ответ: Кроме того, в обозначении станка после третьей
	(четвертой) цифры буквой указывается класс точности данной
	модели: П — повышенной точности, В — высокой точности, А
	— особо высокой точности, С — особо точный (при нормальной
	точности станка обозначение его класса Н опускается). 5. Направляющие качения?
	Ответ: Направляющие качения имеют высокую долговечность,
	характеризуются небольшим трением, причем коэффициент
	трения практически не зависит от скорости движения. В качестве
	тел качения используют ролики. Предварительный натяг
	повышает жесткость направляющих в 23 раза, для создания
	натяга используют регулирующие устройства.
	патлі а непользуют регулирующие устронетьа.

4	Дано формально-логическое объяснение на 4-и из 5-ти вопросов.
3	Дано формально-логическое объяснение на 3-и из 5-ти вопросов.

1.2 назначения, область применения, устройство, принципы работы, наладку и технологические возможности металлорежущих станков, в т.ч. с числовым программным управлением (ЧПУ);

Задание №1 (из текущего контроля)

Необходимо дать формально-логическое объяснение на 5-ть вопросов из возможных 17-и.

- 1. Что такое Базовые детали?
- 2. Что такое Приводы и преобразователи для станков с ЧПУ?
- 3. Что такое Привод подачи для станков с ЧПУ?
- 4. Что такое Привода главного движения для станков с ЧПУ?
- 5. Что такое Преобразователи частоты для управления асинхронными двигателями?
- 6. Что такое Шпиндели?
- 7. Что такое Опоры шпинделя?
- 8. Что такое Привод позиционирования?
- 9. Что такое Вспомогательные механизмы станков с ЧПУ?
- 10. Что такое Устройства автоматической смены инструмента?
- 11. Что такое Револьверная головка?
- 12. Дать краткое определение выбора токарного оборудования.
- 13. Раскрыть основные пораметры подбора технологического оборудования (станков).
- 14. Виды делительных головок.
- 15. Настройка делительной головки не непосредственное деление.
- 16. Произвести выбор оборудования по заданным габаритам токарной детали и ее точностью изготовления из данных станков.
- 17. Произвести выбор оборудования по заданным габаритам фрезерной детали и ее точностью изготовления из данных станков.

Оценка	Показатели оценки
5	Дано формально-логическое объяснение на все 5-ть вопросов.
	1. Что такое Базовые детали?
	Ответ: Базовые детали (станины, колонны, салазки). Столы,
	например, конструируют коробчатой формы с продольными и
	поперечными ребрами. Базовые детали изготавливают литыми
	или сварными. Наметилась тенденция выполнять такие детали из
	полимерного бетона или синтетического гранита, что в еще
	большей степени повышает жесткость и виброустойчивость

станка.

2. Что такое Привод подачи для станков с ЧПУ? Ответ: Привод подачи для станков с ЧПУ. В качестве привода используют двигатели, представляющие собой управляемые от цифровых преобразователей синхронные или асинхронные машины. Бесколлекторные синхронные (вентильные) двигатели для станков с ЧПУ изготавливают с постоянным магнитом на основе редкоземельных элементов и оснащают датчиками обратной связи и тормозами. Асинхронные двигатели применяют реже, чем синхронные. Привод движения подач характеризуется минимально возможными зазорами, малым временем разгона и торможения, небольшими силами трения, уменьшенным нагревом элементов привода, большим диапазоном регулирования. Обеспечение этих характеристик возможно благодаря применению шариковых и гидростатических винтовых передач, направляющих качения и гидростатических направляющих, беззазорных редукторов с короткими кинематическими цепями и т.д.

3. Что такое Револьверная головка?

Ответ: Револьверная головка - это наиболее простое устройство смены инструмента: установку и зажим инструмента осуществляют вручную. В рабочей позиции один из шпинделей приводится во вращение от главного привода станка.

Револьверные головки устанавливают на токарные, сверлильные, фрезерные, многоцелевые станки с ЧПУ; в головке закрепляют от 4 до 12 инструментов.

- 4. Дать краткое определение выбора токарного оборудования. Ответ: Выбор токарных станков с ЧПУ проводится в зависимости от габаритных размеров и массы заготовок с корректировкой на точностные возможности оборудования.
- 5. Раскрыть основные пораметры подбора технологического оборудования (станков).

Ответ: 1. габаритными размерами заготовок и размерами обработки; 2. мощностью, необходимой на резание; 3. производительностью и себестоимостью в соответствии с типом производства; 4. возможностью приобретения и ценой станка; 5. удобством и безопасностью работы станка

4 Дано формально-логическое объяснение на 4-и из 5-и вопросов.

Дано формально-логическое объяснение на 3-и из 5-и вопросов

1.3 назначение, область применения, устройство, технологические возможности роботехнических комплексов (РТК), гибких производственных модулей (ГПМ), гибких производственных систем (ГПС)

Задание №1 (из текущего контроля)

Дать формально-логическое объяснение на 5-ть вопросов из возможных 7-и.

- 1. Раскрыть понятие робототехнических комплексов (РТК) и область их применения. Технологические возможности.
- 2. Раскрыть понятие возможности. гибких производственных систем (ГПС) и область их применения. Технологические возможности.
- 3. На какие подсистемы может разделятся ГПС?
- 4. Как ранжируются подсистемы ГПС по степени первоочередности разработки?
- 5. Как ГПС классифицируется по организационным признакам?
- 6. Раскрыть понятие гибких производственных модулей (ГПМ) и область их применения. Технологические возможности.
- 7. Прочитать кинематическую схему сверлильно-расточного станка КС12 500

Оценка	Показатели оценки
5	Дано формально-логическое объяснение на все 5-ть вопросов.
	1 Раскрыть понятие робототехнических комплексов (РТК) и
	область их применения. Технологические возможности.
	Ответ: Робототехнические комплексы - гибкие производственные
	системы, в которых автоматически действующие машины,
	устройства, приспособления реализуют всю технологию
	производства, за исключением функции управления и
	контроля,осуществляемых человеком. Промышленный робот
	является универсальным устройством, позволяющим
	автоматизировать любой производственный процесс.
	Современные промышленные роботы позволяют совершать
	сложнейшие траектории движений с высочайшей точностью;
	роботможет работать во вредных для человеческого организма
	средах длительное время. Управление
	роботизированнымикомплексами производится с помощью
	программного обеспечения, созданного под конкретные задачи
	производства и позволяющего легко программировать сложные
	многоуровневые производственные процессы через удобный
	пользовательский интерфейс.
	2. На какие подсистемы может разделятся ГПС?
	Ответ: 1. Оборудование с ЧПУ, гибкие производственные
	модули, робототехнические комплексы, универсальное
	оборудование. 2. Автоматизированная транспортно-складская

система. 3. АСУП — автоматизированная система управления производством. 4. АСУТП — автоматизированная система управления технологическим процессом. 5. Автоматизированная система технологической подготовкой производства. 6. Автоматизированная система инструментального обеспечения 7. Система автоматизированного контроля. 8. САПР —

Автоматизированная система научных исследований.

автоматизированная система проектирования. 9.

3. Раскрыть понятие возможности. гибких производственных систем (ГПС) и область их применения. Технологические возможности.

Ответ: ГПС – совокупность в разных сочетаниях оборудования с ЧПУ, робототизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение заданного интервале времени, обладающую свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик. ГПС связаны с изготовлением конструктивно и технологически однородной продукции в подетально- специализированных (предметно-замкнутых) производственных подразделениях. ГПС – не есть нечто конкретное, одинаковое во всех производствах. Это обобщенное понятие самых различных по своему уровню автоматизации производственных систем. Главный принцип организации ГПС – параллельность и непрерывность выполнения различных производственных процессов.

4. Как ранжируются подсистемы ГПС по степени первоочередности разработки?

Ответ: 1 уровень — включает 1. Оборудование с ЧПУ, гибкие производственные модули, робототехнические комплексы, универсальное оборудование. 2. Автоматизированная транспортно-складская система. 3. АСУП — автоматизированная система управления производством.

2 уровень — включает 1. Оборудование с ЧПУ, гибкие производственные модули, робототехнические комплексы, универсальное оборудование. 2. Автоматизированная транспортно-складская система. 3. АСУП — автоматизированная система управления производством. 4. АСУПП — автоматизированная система управления технологическим процессом. 5. Автоматизированная система технологической

1	подготовкой производства.
	3 уровень – включает 1. Оборудование с ЧПУ, гибкие
	производственные модули, робототехнические комплексы,
	универсальное оборудование. 2. Автоматизированная
	транспортно-складская система. 3. АСУП – автоматизированная
	система управления производством. 4. АСУТП –
	автоматизированная система управления технологическим
	процессом. 5. Автоматизированная система технологической
	подготовкой производства. 6. Автоматизированная система
	инструментального обеспечения 7. Система автоматизированного
	контроля.
	4 уровень – включает 1. Оборудование с ЧПУ, гибкие
	производственные модули, робототехнические комплексы,
	универсальное оборудование. 2. Автоматизированная
	транспортно-складская система. 3. АСУП – автоматизированная
	система управления производством. 4. АСУТП –
	автоматизированная система управления технологическим
	процессом. 5. Автоматизированная система технологической
	подготовкой производства. 6. Автоматизированная система
	инструментального обеспечения 7. Система автоматизированного
	контроля. 8. САПР – автоматизированная система
	проектирования. 9. Автоматизированная система научных
	исследований.
	5. Как ГПС классифицируется по организационным признакам?
	Ответ: ГАЛ (линия), ГАУ (участок), ГАЦ (цех) как совокупность
	ГАУ.
4	Необходимо дать формально-логическое объяснение на 4-и из
	5-ти вопросов.
3	Необходимо дать формально-логическое объяснение на 4-и из
	5-ти вопросов.
	1

2.1 читать кинематические схемы;

Задание №1 (из текущего контроля)

Прочитать кинематическую схему сверлильно-расточного станка КС12 500

Оценка	Показатели оценки

ŀ

Прочитана кинематическая схема со всеми пояснениями. Главное движение осуществляется от двигателя постоянного тока Ml, движение а которого передается посредством ременной передачи 0 105 - 0 132 (при выключению муфте перебора МІ). Через передачи 37 - 77, 40 - 65 на шпиндель. При включенной муфт движение передается ременной передачей 0 106 - 0 72, обеспечивая верхний диапазо частот вращений. Частота вращения устанавливается двигателем. Включение муфт перебора осуществляется от двигателя постоянного тока М2, через червячную передачу 1 100, предохранительную муфту Мп, реечное колесо 36 и рейку связанную с муфтой. Ориентация шпинделя производится в следующем порядке: Шпиндель вращается на малых оборотах по часовой стрелке. Включается электромагнит перемещая рычаг 4 до упора в диск 2, жестко связанный со шпинделем. Рычаг через штс 1 включает микропереключатель 5, который выдает команду на реверс шпинделя, при это рычаг 4 упирается в вырез диска 2 и переключатель 6 выдает команду «Шпиндел сориентирован » для извлечения инструмента. При разориентации снимается питание электромагнита и рычаг 4 под действием пружины отходит от диска, срабатывав переключатель 7, подавая команду « Шпиндель разориентирован ». Перемещение шпиндельной головки осуществляется от двигателя постоянного тока М движение от которого передается через передачи 0 90 - 0 90, 2 -30 на винт - гайк качения с шагом Р = 10. Перемещение отслеживается сельсинами СС 1 (десятк миллиметров), СС 2 (единицы), СС 3 (десятые доли). Движения на сельсины снимаете с винта через винтовые колеса 36 - 36 и ряд передач. Перемещение пиноли производится от двигателя М4, через передачи 1 - 40, 46 - 7 движение передается на рейку пиноли 51. Одновременно движение передается через 34 50 на диск с кулачками 8, от которых срабатывают переключатели 9, 10, 11, 12, отслежива перемещение пиноли. Перемещение транспортера производится двигателем М5, через передачи 1 - 60, 17 - 11 движение передается на ведущую звездочку 12, которая находится в зацеплении с стержнями секций транспортера. Движение со звездочками передается через 192 - 100, 3 - 96 на сельсин СС 5 и через 23 - 92 на ось, которыми отслеживаются положение секци Переключатели 14 и 14 являются ограничителями хода. При выходе нужной секции в зон шпинделя сельсин дает команду на срабатывание механизма

	точного останова. При это получает питание электромагнит 15
	или 19, поворачивается рычаг 16 с качалкой I Качалка своим
	пальцем, упираясь в выступ корпуса механизма останова,
	образует жесткий упор, на который и находит упор транспортера,
	точно фиксируя секцию инструментом относительно оси
	шпинделя. Переключатели 20 и 21 дают команду н реверь
	транспортера, а переключатели 22 и 23 фиксируют положение на
	упоре. Перемещение стола осуществляется от двигателя
	постоянного тока M1 (рис.3). Движени от двигателя через
	передачу 3-40 передается на шариковый винт с шагом H = 10.
	Перемещение отслеживается поразрядно сельсинами СС1СС4,
	движения на которы снимается с винта и передается через ряд
	зубчатых передач. Привод салазок выполне идентично.
	Тахогенераторы ТГ 1, ТГ2 выполняют функцию датчиков
	скорости, для получения жестких механических характеристик
	работы двигателей.
4	Кинематическая схема прочитана, но допущены некоторые
	неточности в передачах.
3	Кинематическая цепь прочитана более 50%

2.2 осуществлять рациональный выбор технологического оборудования для выполнения технологического процесса;

Задание №1 (из текущего контроля)

Показать умение рационального выбора оборудования для выполнения технологического процесса. (конкретизировать для 1 варианта)

Оценка	Показатели оценки
5	Оборудование выбрано в соответствии с требованиями технологического процесса и отвечает всем заданным параметрам.
4	Оборудование выбрано в соответствии с требованиями технологического процесса и отвечает заданным параметрам, но допущены некоторые неточности
3	Оборудование выбрано в соответствии с требованиями технологического процесса.