

Министерство образования Иркутской области Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Иркутский авиационный техникум»

УТВЕРЖДАЮ

Директор

ГБНОУИО «ИАТ»

изи / /Якубовский А.Н.

«31» мая 2018 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

ОП.08 Технология машиностроения

специальности

15.02.15 Технология металлообрабатывающего производства

Рассмотрена цикловой комиссией ТМ №15 от 23 мая 2018 г.

Председатель ЦК

/С.Л. Кусакин /

№	Разработчик ФИО
1	Степанов Сергей Леонидович

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Область применения фонда оценочных средств (ФОС)

ФОС по дисциплине является частью программы подготовки специалистов среднего звена по специальности 15.02.15 Технология металлообрабатывающего производства

1.2. Место дисциплины в структуре ППССЗ:

ОП.00 Общепрофессиональный цикл.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины

В результате освоения дисциплины обучающийся должен	№ дидакти ческой единицы	Формируемая дидактическая единица
Знать	1.1	методика отработки детали на технологичность
	1.2	технологические процессы производства типовых деталей машин
	1.3	методика выбора рационального способа изготовления заготовок
	1.4	методика проектирования станочных и сборочных операций
	1.5	правила выбора режущего инструмента, технологической оснастки, оборудования для механической обработки в машиностроительных производствах
	1.6	методика нормирования трудовых процессов
	1.7	технологическая документация, правила ее оформления, нормативные документы по стандартизации
Уметь	2.1	выбирать последовательность обработки поверхностей деталей
	2.2	применять методику отработки деталей на технологичность
	2.3	применять методику проектирования станочных и сборочных операций

		проектировать участки механических и сборочных цехов
		использовать методику нормирования трудовых процессов
	2.6	производить расчет послеоперационных расходов сырья, материалов, инструментов и энергии

1.4. Формируемые компетенции:

- ОК.1 Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам
- ОК.2 Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности
- ОК.3 Планировать и реализовывать собственное профессиональное и личностное развитие
- ОК.4 Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами
- ОК.5 Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста
- ОК.9 Использовать информационные технологии в профессиональной деятельности
- ОК.10 Пользоваться профессиональной документацией на государственном и иностранном языках
- ПК.1.1 Планировать процесс выполнения своей работы на основе задания технолога цеха или участка в соответствии с производственными задачами по изготовлению деталей
- ПК.1.2 Осуществлять сбор, систематизацию и анализ информации для выбора оптимальных технологических решений, в том числе альтернативных в соответствии с принятым процессом выполнения своей работы по изготовлению деталей
- ПК.1.4 Осуществлять выполнение расчетов параметров механической обработки и аддитивного производства в соответствии с принятым технологическим процессом согласно нормативным требованиям, в том числе с использованием систем автоматизированного проектирования
- ПК.1.5 Осуществлять подбор конструктивного исполнения инструмента, материалов режущей части инструмента, технологических приспособлений и оборудования в соответствии с выбранным технологическим решением, в том числе с использованием систем автоматизированного проектирования ПК.1.10 Разрабатывать планировки участков механических цехов машиностроительных производств в соответствии с производственными задачами,

- в том числе с использованием систем автоматизированного проектирования ПК.2.1 Планировать процесс выполнения своей работы в соответствии с производственными задачами по сборке узлов или изделий
- ПК.2.2 Осуществлять сбор, систематизацию и анализ информации для выбора оптимальных технологических решений, в том числе альтернативных в соответствии с принятым процессом выполнения своей работы по сборке узлов или изделий
- ПК.2.4 Осуществлять выполнение расчетов параметров процесса сборки узлов или изделий в соответствии с принятым технологическим процессом согласно нормативным требованиям, в том числе с использованием систем автоматизированного проектирования
- ПК.2.5 Осуществлять подбор конструктивного исполнения сборочного инструмента, материалов исполнительных элементов инструмента, приспособлений и оборудования в соответствии с выбранным технологическим решением, в том числе с использованием систем автоматизированного проектирования
- ПК.2.10 Разрабатывать планировки участков сборочных цехов машиностроительных производств в соответствии с производственными задачами, в том числе с использованием систем автоматизированного проектирования

2. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

2.1 Текущий контроль (ТК) № 1

Тема занятия: 1.1.6. Факторы, определяющие точность обработки. Факторы, влияющие на точность обработки. Понятие об экономической и достижимой точности. Методы оценки погрешности обработки.

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 1.2 технологические процессы производства типовых деталей машин

Занятие(-я):

- 1.1.1. Производство машиностроительного завода, получение заготовок, обработка заготовок, сборка.
- 1.1.2.Типы машиностроительного производства, характеристики по технологическим, производственным и экономическим признакам.
- 1.1.3.Структура технологического процесса обработки детали.
- 1.1.4. Технологическая операция и ее элементы: технологический переход, вспомогательный переход, рабочий ход, позиция, установ.
- 1.1.5. Производственные и операционные партии, цикл технологической операции, такт, ритм выпуска изделия.

Залание №1

1. Дать определения производственного и технологического процесса, перечислить элементы технологического процесса и дать определение каждого элемента.

Образец ответа:

Производственный процесс — это совокупность всех действий людей и орудий производства, необходимых на данном предприятии для изготовления или ремонта, выпуска продукции

Технологический процесс – это часть производственного процесса, включающая в себя последовательное изменение формы, размеров, внешнего вида или внутренних свойств материалов или полуфабрикатов для получения изделий с заданными параметрами и их контроль

Элементы технологического процесса (далее - ТП).

- **1. Технологическая операция (далее ТО)** это законченная часть ТП, выполняемая на одном рабочем месте над одним или несколькими одновременно обрабатываемыми или собираемыми изделиями одним или несколькими рабочими.
- **2. Технологический установ** это часть ТО, выполняемая при неизменном закреплении обрабатываемых заготовок или собираемых изделий.

- **3. Технологический переход** законченная часть ТО, выполняемая одними и теми же средствами технологического оснащения при постоянных режимах обработки и установки (т.е. выполняется одним инструментом).
- **4. Вспомогательный переход** это законченная часть ТО, не сопровождаемая обработкой, но необходимая для выполнения данной операции (например, установка или снятие заготовки, замена инструмента, контрольный замер).
- 5. **Технологическая позиция** это фиксированное положение, которое занимает неизменно закрепленная заготовка относительно неподвижной части оборудования или инструмента для выполнения определенной части операции.
- **6. Рабочий ход** это законченная часть перехода, состоящая из однократного перемещения инструмента относительно заготовки и сопровождаемая изменением формы, размеров, шероховатости поверхности или свойств заготовки.
- **7. Вспомогательный ход** это законченная часть перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемая изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимая для выполнения рабочего хода.

Оценка	Показатели оценки
5	Даны определения производственного и технологического процесса, перечислены семь элементов технологического процесса и даны определения каждого элемента
4	Даны определения производственного и технологического процесса, перечислены шесть элементов технологического процесса и даны определения каждого перечисленного элемента
3	Даны определения производственного и технологического процесса, перечислены от четырех до пяти элементов технологического процесса и даны определения каждого перечисленного элемента

2.2 Текущий контроль (ТК) № 2

Тема занятия: 1.2.3.Заготовки из металлов: литые заготовки, кованные и штампованные заготовки, заготовки из проката. Заготовки из неметаллических материалов.

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 2.1 выбирать последовательность обработки

поверхностей деталей

Занятие(-я):

1.2.2.Определение погрешностей базирования в основных схемах базирования.

Задание №1

Указать последовательность обработки поверхностей.

Образец ответа:

Приобработке деталей на токарных станках с ЧПУ с закреплением их в патроне рекомендуется следующий порядок обработки:

- 1. центрование (для отверстий диаметром менее 20 мм);
- 2. сверление сверлом меньшего диаметра (если используются два сверла);
- 3. сверление сверлом большего диаметра;
- 4. черновая обработка основных поверхностей, подрезание внешнего торца предварительно и окончательно, обработка основных внутренних и наружных поверхностей;
- 5. чистовая обработка основных внутренних и наружных поверхностей;
- 6. обработка дополнительных поверхностей, расположенных в отверстии, на торце и снаружи.

При обработке с закреплением в патроне и поджатием задним центром порядок обработки следующий:

- 1. черновая обработка основных форм наружной поверхности;
- 2. черновая и чистовая обработка дополнительных форм поверхности;
- 3. чистовая обработка основных форм;
- 4. чистовая обработка дополнительных форм, не нуждающихся в черновой обработке.

При обработке корпусных деталей на многооперационных станках рекомендуется

следующий порядок выполнения операций:

- 1. черновая обработка деталей с двух-трех сторон (в качестве базы используются достаточно большие плоскости);
- 2. черновая обработка остальных сторон детали с установкой по обработанным поверхностям, создание баз для последующей обработки;
- 3. чистовая обработка базовой и противобазовой поверхностей и всех элементов (пазов, уступов, отверстий) на этих плоскостях;
- 4. чистовая обработка остальных сторон детали.

Оценка	Показатели оценки
5	Указана последовательность обработки поверхностей для 3-х вариантов закрепления деталей
4	Указана последовательность обработки поверхностей для 2-х вариантов закрепления деталей
3	Указана последовательность обработки поверхностей для 1-го варианта закрепления деталей

2.3 Текущий контроль (ТК) № 3

Тема занятия: 1.2.7. Качественный и количественный методы оценки технологичности конструкции детали: коэффициент точности обработки, коэффициент шероховатости обработки, коэффициент унификации элементов детали.

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 1.3 методика выбора рационального способа изготовления заготовок

Занятие(-я):

- 1.2.3.Заготовки из металлов: литые заготовки, кованные и штампованные заготовки, заготовки из проката. Заготовки из неметаллических материалов.
- 1.2.4. Коэффициент использования заготовок. Влияние способа получения заготовок на технико-экономические показатели технологического процесса обработки. Предварительная обработка заготовок.
- 1.2.5. Припуски на обработку. Факторы, влияющие на размер припуска. Методика определения величины припуска: расчетно-аналитический, статистический, по

таблицам.

Задание №1

Перечислить условия выбора заготовок

Образец ответа:

Условия выбора заготовок:

- 1. Масса и габаритные размеры деталей.
- 2. Материал деталей.

Например: АЛ2 – алюминий литейный – возможно только литье; В93 – прокат, штамповка, поковка, а литье невозможно и т.д.

- 3. Тип производства.
- 4. Конфигурация заготовки.
- 5. Экономические факторы.

Выбирают ту заготовку, которая обеспечивает минимальные затраты на производство заготовки и ее последующую механообработку.

6. Технические факторы.

Без необходимости не используются очень сложные процессы производства заготовки или ее последующей обработки из-за повышения риска брака и усложнения операций производства.

Оценка	Показатели оценки
5	Перечислено 6 условий выбора заготовок
4	Перечислено 5 условий выбора заготовок
3	1. Перечислено от 2 до 4 условий выбора заготовок

Дидактическая единица: 1.1 методика отработки детали на технологичность **Занятие(-я):**

1.2.6. Технологичность конструкции. Критерий технологичности конструкции детали, изделия.

Задание №1

Дать определение технологичности конструкции, перечислить технологические требования, предъявляемые к деталям и дать качественную оценку технологичности конструкции выданной детали

Образец ответа:

Технологичность конструкции — это совокупность свойств конструкции детали (изделия), определяющих ее приспособленность к достижению оптимальных затрат при производстве, эксплуатации и ремонте для заданных показателей качества, объема выпуска и условий выполнения работ.

Технологические требования, предъявляемые к деталям:

1. Деталь должна быть жесткой и прочной, стенки и перегородки должны быть достаточных размеров, чтобы при закреплении заготовки и в процессе обработки не

возникали деформации а следовательно и погрешность обработки.

- 2. Базовые поверхности детали должны иметь достаточную протяженность позволяющую осуществить полную механическую обработку от одной неизменной базы.
- 3. Обрабатываемые поверхности должны быть открыты и доступны для подхода режущего инструмента при врезании и отхода при выходе.
- 4. Внешняя форма детали должна давать возможность одновременно обрабатывать несколько наружных поверхностей путем много инструментальной обработки.
- 5. Отверстия корпусных деталей по возможности должны иметь простую геометрическую форму без кольцевых канавок и фасок.
- 6. Возможность сквозной обработки при помощи расточных инструментов.
- 7. Отверстия, оси которых расположены под углом относительно стенки обрабатываемой детали, нежелательны. При сверлении подобных отверстий создаются неудобства резания, так как режущие кромки начинают резать не одновременно.
- 8. В стенках и перегородках не желательны различные окна, прерывающие отверстия и т.д.
- 9. Крепежные отверстия деталей должны быть стандартными.

Оценка	Показатели оценки
5	Дано определение технологичности конструкции в соответствии с ГОСТ 14.205-83, перечислены девять технологических требований, предъявляемых к конструкции детали и дана качественная оценка технологичности детали в целом
4	Дано определение технологичности конструкции в соответствии с ГОСТ 14.205-83, перечислены от семи до восьми технологических требований, предъявляемые к деталям и дана качественная оценка технологичности конструкции детали с незначительными ошибками
3	Перечислены от четырех до шести технологических требований, предъявляемые к деталям и дана не полная качественная оценка технологичности конструкции выданной детали

2.4 Текущий контроль (ТК) № 4

Тема занятия: 1.3.1.Классификация технологических процессов по ГОСТ 3.1109-82. Исходная информация для проектирования технологического процесса обработки детали, понятие о технологической дисциплине

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Опрос во время защиты практической работы

Дидактическая единица: 2.2 применять методику отработки деталей на

технологичность

Занятие(-я):

1.2.8. Расчет технологичности детали средней сложности

Задание №1

Дать определение технологичности конструкции, перечислить технологические требования, предъявляемые к деталям и дать качественную оценку технологичности конструкции выданной детали

Образец ответа:

Технологичность конструкции — это совокупность свойств конструкции детали (изделия), определяющих ее приспособленность к достижению оптимальных затрат при производстве, эксплуатации и ремонте для заданных показателей качества, объема выпуска и условий выполнения работ.

Технологические требования, предъявляемые к деталям:

- 1. Деталь должна быть жесткой и прочной, стенки и перегородки должны быть достаточных размеров, чтобы при закреплении заготовки и в процессе обработки не возникали деформации а следовательно и погрешность обработки.
- 2. Базовые поверхности детали должны иметь достаточную протяженность позволяющую осуществить полную механическую обработку от одной неизменной базы.
- 3. Обрабатываемые поверхности должны быть открыты и доступны для подхода режущего инструмента при врезании и отхода при выходе.
- 4. Внешняя форма детали должна давать возможность одновременно обрабатывать несколько наружных поверхностей путем много инструментальной обработки.
- 5. Отверстия корпусных деталей по возможности должны иметь простую геометрическую форму без кольцевых канавок и фасок.
- 6. Возможность сквозной обработки при помощи расточных инструментов.
- 7. Отверстия, оси которых расположены под углом относительно стенки обрабатываемой детали, нежелательны. При сверлении подобных отверстий создаются неудобства резания, так как режущие кромки начинают резать не одновременно.
- 8. В стенках и перегородках не желательны различные окна, прерывающие отверстия и т.д.
- 9. Крепежные отверстия деталей должны быть стандартными.

Оценка	Показатели оценки
5	Дано определение технологичности конструкции в соответствии с ГОСТ 14.205-83, перечислены девять технологических требований, предъявляемых к конструкции детали и дана качественная оценка технологичности детали в целом

4	Дано определение технологичности конструкции в соответствии с ГОСТ 14.205-83, перечислены от семи до восьми технологических требований, предъявляемые к деталям и дана качественная оценка технологичности конструкции детали с незначительными ошибками
3	Перечислены от четырех до шести технологических требований, предъявляемые к деталям и дана не полная качественная оценка технологичности конструкции выданной детали

Задание №2

Рассчитать коэффициенты точности, шероховатости и унификации для выданной детали, дать количественную оценку технологичности по всем коэффициентам и сделать общий вывод о конструкции детали

Оценка	Показатели оценки
5	Рассчитаны коэффициенты точности, шероховатости и унификации для выданной детали, дана количественная оценка технологичности по всем коэффициентам и сделан общий вывод о конструкции детали
4	Рассчитаны коэффициенты точности, шероховатости и унификации для выданной детали, дана количественная оценка технологичности по всем коэффициентам и сделан общий вывод о конструкции детали, но допущено до двух ошибок в расчетах
3	Рассчитаны коэффициенты точности, шероховатости и унификации для выданной детали, дана количественная оценка технологичности по всем коэффициентам и сделан общий вывод о конструкции детали, но допущено до четырех ошибок в расчетах и имеются ошибки в общем выводе

2.5 Текущий контроль (ТК) № 5

Тема занятия: 1.3.7. Системы автоматизированного проектирования технологических процессов (САПР ТП)

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 1.7 технологическая документация, правила ее оформления, нормативные документы по стандартизации **Занятие(-я):**

1.3.1.Классификация технологических процессов по ГОСТ 3.1109-82. Исходная информация для проектирования технологического процесса обработки детали,

понятие о технологической дисциплине

1.3.6.Виды технологической документации. Правила оформления маршрутной карты техпроцесса. Правила оформления операционного эскиза. Правила оформления операционной карты механической обработки. Правила оформления карты контроля.

Задание №1

Классифицировать технологические процессы. Перечислить виды технологических процессов и дать их определения

Образец ответа:

Классификация технологических процессов по степени унификации:

- а) единичный это технологический процесс изготовления или ремонта определенного изделия независимо от типа производства;
- б) типовой это технологический процесс обработки для группы изделий со сходными конструктивными и технологическими признаками;
- в) групповой это технологический процесс для изготовления или ремонта группы изделий с различными конструктивными, но со сходными технологическими признаками.

Классификация технологических процессов по прогрессивности:

- а) перспективный это технологический процесс, методы и средства достижения которого предстоит освоить полностью или частично на данном предприятии (т.е. ТП, который необходимо освоить);
- б) рабочий это ТП, который проверен и изучен на данном предприятии. Классификация технологических процессов по стадии разработки:
- а) проектный это ТП, который требует проверки;
- б) временный это ТП, используемый для временной замены существующего ТП (из-за выхода из строя оборудования или оснащения), а так же в аварийных ситуациях;
- в) стандартный это ТП, который регламентирован стандартом (ГОСТом, ОСТом, СТП).

Классификация технологических процессов по степени детализации описания:

- а) маршрутное описание ТП это сокращенное описание всех операций в последовательности их выполнения (допускается не указывать ряд технологических параметров, не разделять на переходы). Этот способ применяется в единичном производстве, при разработке временных и простых ТП. При написании используется стандартная форма маршрутная карта (МК).
- б) операционное описание ТП это полное описание всех операций с указанием переходов, режимов резания, норм времени; каждая операция разрабатывается на отдельных операционных картах (ОК). Рекомендуется к каждому установу разрабатывать карту эскизов (КЭ) с указанием обрабатываемых поверхностей, выполняемых размеров и шероховатости с элементами базирования и закрепления. Применяется в серийном и массовом производстве.

в) маршрутно-операционное описание — это сокращенное описание простых операций, как при маршрутном описании и подробное описание сложных или ответственных операций, как при операционном описании. Применяется в мелкосерийном производстве.

Оценка	Показатели оценки
5	Перечислены от десяти до одиннадцати видов технологических
	процессов и даны их определения
4	Перечислены от восьми до девяти видов технологических
	процессов и даны их определения
3	Перечислены от четырех до семи видов технологических
	процессов и даны их определения

2.6 Текущий контроль (ТК) № 6

Тема занятия: 2.2.1.Основное (машинное) время и порядок его определения. Нормативы для технического нормирования. Анализ формул для определения основного времени и факторы, влияющие на его производительность. Методы определения нормативов основного времени на станочную операцию.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 1.6 методика нормирования трудовых процессов **Занятие(-я):**

- 2.1.1.Классификация трудовых процессов. Структура затрат рабочего времени, норма времени и ее структура, рабочее время и его составляющие. Формула для расчета штучного времени. Виды норм труда.
- 2.1.2.Классификация методов нормирования трудовых процессов. Аналитический метод и его разновидности. Опытно-статистический метод. Особенности нормирования трудовых процессов: вспомогательных рабочих, ИТР, служащих. Организация технико-нормативной работы на машиностроительном предприятии.

Задание №1

Дать определения **основного** (технологического) времени (То), **вспомогательного** времени (Тв), **подготовительно - заключительного** времени (Тпз), времени организационного обслуживания (Торг) и времени технического обслуживания (Ттех).

Образец ответа:

Основным является время, затрачиваемое рабочим на качественное или количественное изменение предмета труда, т. е. на изменение формы, размеров, внешнего вида, структуры и свойств, состояния и положения обрабатываемого предмета труда в пространстве.

Вспомогательным является время, затрачиваемое исполнителем на действия,

обеспечивающие выполнение основной работы. К этому виду времени относятся затраты времени на установку и снятие детали, загрузку машины, приемы, связанные с управлением оборудованием, контрольными измерениями и др. Подготовительно-заключительное время - это время, затрачиваемое на подготовку исполнителя или исполнителей и средств технического оснащения к выполнению технологической операции и приведение последних в порядок после окончания смены и (или) выполнения этой операции для партии предметов труда (получение наряда на работу, инструмента, приспособлений, сдача их после выполнения производственного задания и т. д.).

Время технического обслуживания - это время на уход за оборудованием и поддержание в рабочем состоянии инструмента (подналадка станка, смена затупившегося инструмента, уборка стружки в процессе работы и др.) для выполнения конкретной работы.

Время организационного обслуживания - это время, затрачиваемое рабочим на поддержание рабочего места в рабочем состоянии (протирка оборудования, удаление отходов с рабочего места и т. д.), которое не связано с конкретно выполняемой операцией.

Оценка	Показатели оценки
5	Даны пять определений
4	Даны четыре определения
3	Даны три определения

2.7 Текущий контроль (ТК) № 7

Тема занятия: 3.1.1.Обработки наружных поверхностей тел вращения (валов). Этапы обработки. Обработка на токарно-винторезных, токарно-револьверных станках, многошпиндельных токарных полуавтоматах.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Опрос во время защиты практической работы

Дидактическая единица: 2.5 использовать методику нормирования трудовых процессов

Занятие(-я):

2.2.2. Расчет норм времени для токарных, сверлильных, фрезерных и программных операций

Задание №1

Рассчитать нормы времени То, Тв, Тпз, Торг и Ттех на операции технологического процесса.

Оценка	Показатели оценки	

5	Рассчитаны нормы времени То, Тв, Тпз, Торг и Ттех на три
	операции технологического процесса
4	Рассчитаны нормы времени То, Тв, Тпз, Торг и Ттех на две
	операции технологического процесса
3	Рассчитаны нормы времени То, Тв, Тпз, Торг и Ттех на одну
	операцию технологического процесса

2.8 Текущий контроль (ТК) № 8

Тема занятия: 3.2.1. Технологичность конструкции корпусных деталей. Методы обработки. Обработка корпусов на агрегатных станках. Обработка корпусов на многооперационных станках с ПУ.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Опрос во время защиты практической работы

Дидактическая единица: 1.2 технологические процессы производства типовых деталей машин

Занятие(-я):

- 1.1.6. Факторы, определяющие точность обработки. Факторы, влияющие на точность обработки. Понятие об экономической и достижимой точности. Методы оценки погрешности обработки.
- 1.1.7. Качество поверхности, факторы, влияющие на качество. Параметры оценки шероховатости поверхности по ГОСТ. Методы и средства оценки шероховатости поверхности. Влияние качества поверхности на эксплуатационные характеристики деталей машин.
- 1.2.1.Основные схемы базирования. Рекомендации по выбору баз. Погрешность базирования и закрепления заготовки при обработке. Условное обозначение опор и зажимов на операционных эскизах.
- 1.2.3.Заготовки из металлов: литые заготовки, кованные и штампованные заготовки, заготовки из проката. Заготовки из неметаллических материалов.
- 1.2.4. Коэффициент использования заготовок. Влияние способа получения заготовок на технико-экономические показатели технологического процесса обработки. Предварительная обработка заготовок.
- 1.2.5. Припуски на обработку. Факторы, влияющие на размер припуска. Методика определения величины припуска: расчетно-аналитический, статистический, по таблицам.
- 1.3.1.Классификация технологических процессов по ГОСТ 3.1109-82. Исходная информация для проектирования технологического процесса обработки детали, понятие о технологической дисциплине
- 1.3.2.Последовательность проектирования техпроцесса, вспомогательные и контрольные операции.
- 1.3.3.Особенности проектирования технологических процессов обработки на

станках с ЧПУ.

- 1.3.4.Оценка технико-экономической эффективности технологического процесса обработки. Расчеты расхода сырья, материалов, инструмента и энергии.
- 1.3.5. Методы внедрения, производственной отладки технологических процессов, контроля за соблюдением технологической дисциплины.
- 1.3.6.Виды технологической документации. Правила оформления маршрутной карты техпроцесса. Правила оформления операционного эскиза. Правила оформления операционной карты механической обработки. Правила оформления карты контроля.
- 1.3.7.Системы автоматизированного проектирования технологических процессов (САПР ТП)
- 3.1.1.Обработки наружных поверхностей тел вращения (валов). Этапы обработки. Обработка на токарно-винторезных, токарно-револьверных станках, многошпиндельных токарных полуавтоматах.
- 3.1.2.Отделочные виды обработки: тонкое точение, притирка, суперфиниширование. Обработка давлением. Схемы технологических наладок.
- 3.1.3.Способы нарезания наружной и внутренней резьбы. «Вихревой» способ нарезания резьбы. Накатывание резьбы. Шлифование резьбы. Способы нарезания точных резьб. Схемы технологических наладок.
- 3.1.4.Составление реферата на тему "Методы нарезания резьбы специализированным резьбообразующим инструментом"
- 3.1.5. Шлицевые соединения. Способы обработки наружных и внутренних шлицевых поверхностей.
- 3.1.6.Обработка плоских поверхностей на строгальных станках. Обработка плоских поверхностей фрезерованием. Протягивание и шлифование плоских поверхностей. Отделка плоских поверхностей. Схемы технологических наладок.
- 3.1.7.Обработка фасонных поверхностей фасонным режущим инструментом. Обработка фасонных поверхностей по копиру. Обработка фасонных поверхностей на станках с ЧПУ. Схемы технологических наладок.
- 3.1.9.Проектирование технологического процесса механической обработки детали типа "Вал"

Задание №1

Указать последовательность разработки технологического процесса изготовления деталей

Образец ответа:

Последовательность разработки технологического процесса изготовления деталей.

- 1. Группирование деталей по сходным конструктивно-технологическим признакам для создания типовых технологических процессов.
- 2. Изучение размеров с допусками, параметрами шероховатости, отклонениями формы и расположения поверхностей для создания схем базирования. Наиболее ответственно необходимо подходить к выбору первых черновых и чистовых баз и

баз для обработки поверхностей, связанных жесткими допусками расположения поверхностей.

- 3. Разработка маршрута обработки последовательности обработки поверхностей с определением вида обработки.
- 4. Расчет припусков с определением межоперационных размеров, при этом определяется целесообразность разделения обработки на черновую и чистовую в отдельные операции.
- 5. Выбор оборудования и оснащения.
- 6. Детализация обработки в операции составление переходов с расчетом режимов обработки и нормирования.
- 7. Определение технико-экономической эффективности ПТ.
- 8. Оформление по ГОСТам (ОСТам, СТП) в соответствии с требованиями ЕСТД.

Оценка	Показатели оценки	
5	Указана полная последовательность разработки	
	технологического процесса изготовления деталей	
4	Последовательность разработки технологического процесса	
	изготовления деталей состоит из семи пунктов	
3	Последовательность разработки технологического процесса	
	изготовления деталей состоит из пяти - шести пунктов	

Дидактическая единица: 1.4 методика проектирования станочных и сборочных операций

Занятие(-я):

- 1.3.2.Последовательность проектирования техпроцесса, вспомогательные и контрольные операции.
- 1.3.3.Особенности проектирования технологических процессов обработки на станках с ЧПУ.
- 1.3.4.Оценка технико-экономической эффективности технологического процесса обработки. Расчеты расхода сырья, материалов, инструмента и энергии.
- 1.3.5.Методы внедрения, производственной отладки технологических процессов, контроля за соблюдением технологической дисциплины.
- 1.3.6.Виды технологической документации. Правила оформления маршрутной карты техпроцесса. Правила оформления операционного эскиза. Правила оформления операционной карты механической обработки. Правила оформления карты контроля.
- 1.3.7.Системы автоматизированного проектирования технологических процессов (САПР ТП)
- 3.1.1.Обработки наружных поверхностей тел вращения (валов). Этапы обработки. Обработка на токарно-винторезных, токарно-револьверных станках,

многошпиндельных токарных полуавтоматах.

- 3.1.2.Отделочные виды обработки: тонкое точение, притирка, суперфиниширование. Обработка давлением. Схемы технологических наладок.
- 3.1.3.Способы нарезания наружной и внутренней резьбы. «Вихревой» способ нарезания резьбы. Накатывание резьбы. Шлифование резьбы. Способы нарезания точных резьб. Схемы технологических наладок.
- 3.1.5. Шлицевые соединения. Способы обработки наружных и внутренних шлицевых поверхностей.
- 3.1.6.Обработка плоских поверхностей на строгальных станках. Обработка плоских поверхностей фрезерованием. Протягивание и шлифование плоских поверхностей. Отделка плоских поверхностей. Схемы технологических наладок.
- 3.1.7.Обработка фасонных поверхностей фасонным режущим инструментом. Обработка фасонных поверхностей по копиру. Обработка фасонных поверхностей на станках с ЧПУ. Схемы технологических наладок.
- 3.1.9.Проектирование технологического процесса механической обработки детали типа "Вал"

Задание №1

Составить технологический маршрут изготовления детали "Вал" Образец ответа:

Типовой маршрут обработки вала с термообработкой:

- 1. Подрезка торцев и центрование.
- 2. Обработка в центрах.

Предварительная обработка наружных поверхностей примерно половины детали, переустановка и обработка оставшейся части. Разделение производят по наибольшей ступени.

- 3. Фрезерование различных лысок, пазов, скосов. Сверление отверстий, перпендикулярных оси вращения детали. Предварительное нарезание зубьев, шлицев, резьбы.
- 4. Термообработка.
- 5. Для очень точных деталей прошлифовывают центра. Шлифование посадочных мест с хомутиком
- 6. Доводочные операции сложных поверхностей: зубья, шлицы, резьбы шлифование и притирка.

Оценка	Показатели оценки
5	Составлен технологический маршрут обработки детали "Вал" в соответствии с типовым маршрутом обработки без ошибок
4	Составлен технологический маршрут обработки детали "Вал" в соответствии с типовым маршрутом обработки с одной ошибкой

3 Составлен технологический маршрут обработки детали "Вал" в соответствии с типовым маршрутом обработки с двумя ошибками

Дидактическая единица: 1.5 правила выбора режущего инструмента, технологической оснастки, оборудования для механической обработки в машиностроительных производствах

Занятие(-я):

- 3.1.1.Обработки наружных поверхностей тел вращения (валов). Этапы обработки. Обработка на токарно-винторезных, токарно-револьверных станках, многошпиндельных токарных полуавтоматах.
- 3.1.2.Отделочные виды обработки: тонкое точение, притирка, суперфиниширование. Обработка давлением. Схемы технологических наладок.
- 3.1.3.Способы нарезания наружной и внутренней резьбы. «Вихревой» способ нарезания резьбы. Накатывание резьбы. Шлифование резьбы. Способы нарезания точных резьб. Схемы технологических наладок.
- 3.1.4.Составление реферата на тему "Методы нарезания резьбы специализированным резьбообразующим инструментом"
- 3.1.5. Шлицевые соединения. Способы обработки наружных и внутренних шлицевых поверхностей.
- 3.1.6.Обработка плоских поверхностей на строгальных станках. Обработка плоских поверхностей фрезерованием. Протягивание и шлифование плоских поверхностей. Отделка плоских поверхностей. Схемы технологических наладок.
- 3.1.7.Обработка фасонных поверхностей фасонным режущим инструментом. Обработка фасонных поверхностей по копиру. Обработка фасонных поверхностей на станках с ЧПУ. Схемы технологических наладок.
- 3.1.9.Проектирование технологического процесса механической обработки детали типа "Вал"

Задание №1

Перечислете виды режущих инструментов и дайте их описание Образец ответа:

- Резцы: инструмент однолезвийного типа, позволяющий выполнять металлообработку с возможностью разнонаправленного движения подачи;
- **Фрезы**: инструмент, при использовании которого обработка выполняется вращательным движением с траекторией, имеющей неизменный радиус, и движением подачи, которое по направлению не совпадает с осью вращения;
- Сверла: режущий инструмент осевого типа, который используется для создания отверстий в материале или увеличении диаметра уже имеющихся отверстий. Обработка сверлами осуществляется вращательным движением,

дополненным движением подачи, направление которого совпадает с осью вращения;

- Зенкеры: инструмент осевого типа, с помощью которого корректируются размеры и форма имеющихся отверстий, а также увеличивается их диаметр;
- Развертки: осевой инструмент, который применяется для чистовой обработки стенок отверстий (уменьшения их шероховатости);
- **Цековки**: металлорежущий инструмент, также относящийся к категории осевых и используемый для обработки торцовых или цилиндрических участков отверстий;
- Плашки: используются для нарезания наружной резьбы на заготовках;
- **Метчики**: также применяются для нарезания резьбы но, в отличие от плашек, не на цилиндрических заготовках, а внутри отверстий;
- Ножовочные полотна: инструмент многолезвийного типа, имеющий форму металлической полосы с множеством зубьев, высота которых одинакова. Ножовочные полотна используются для отрезания части заготовки или создания в ней пазов, при этом главное движение резания является поступательным;
- Долбяки: применяются для зуботочения или зубодолбления шлицев валов, зубчатых колес, других деталей;
- **Шеверы**: инструмент, название которого происходит от английского слова «shaver» (в переводе «бритва»). Он предназначен для чистовой обработки зубчатых колес, которая выполняется методом «скобления»;
- Абразивный инструмент: бруски, круги, кристаллы, крупные зерна или порошок абразивного материала. Инструмент, входящий в данную группу, применяется для чистовой обработки различных деталей.

Оценка	Показатели оценки	
5	Названы все виды инструмента и дано их описание	
4	Названо только десять видов инструментов и их описание	
3	Названо только шесть видов инструментов и их описание	

Дидактическая единица: 2.3 применять методику проектирования станочных и сборочных операций

Занятие(-я):

- 3.1.8.Проектирование маршрута обработки детали типа "Вал"
- 3.1.9.Проектирование технологического процесса механической обработки детали типа "Вал"

Задание №1

Спроектировать технологические операции механической обработки детали "Вал" и дать определения элементов технологической операции

Образец ответа:

Элементы технологической операции:

- **1. Технологическая операция (ТО)** это законченная часть технологического процесса, выполняемая на одном рабочем месте над одним или несколькими одновременно обрабатываемыми или собираемыми изделиями одним или несколькими рабочими.
- **2. Технологический установ** это часть ТО, выполняемая при неизменном закреплении обрабатываемых заготовок или собираемых изделий.
- **3. Технологический переход** законченная часть ТО, выполняемая одними и теми же средствами технологического оснащения при постоянных режимах обработки и установки (т.е. выполняется одним инструментом).
- **4. Вспомогательный переход** это законченная часть ТО, не сопровождаемая обработкой, но необходимая для выполнения данной операции (например, установка или снятие заготовки, замена инструмента, контрольный замер).
- 5.**Технологическая позиция** это фиксированное положение, которое занимает неизменно закрепленная заготовка относительно неподвижной части оборудования или инструмента для выполнения определенной части операции.
- **6. Рабочий ход** это законченная часть перехода, состоящая из однократного перемещения инструмента относительно заготовки и сопровождаемая изменением формы, размеров, шероховатости поверхности или свойств заготовки.
- 7. Вспомогательный ход это законченная часть перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемая изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимая для выполнения рабочего хода.

Оценка	Показатели оценки	
5	Даны определения семи элементов технологической операции	
4	Даны определения шести элементов технологической операции	
	Даны определения от трех до пяти элементов технологической операции	

2.9 Текущий контроль (ТК) № 9

Тема занятия: 3.2.3. Произведение расчетов послеоперационных расходов сырья, материалов, инструментов и энергии

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 1.6 методика нормирования трудовых процессов **Занятие(-я):**

2.2.1.Основное (машинное) время и порядок его определения. Нормативы для технического нормирования. Анализ формул для определения основного времени и

факторы, влияющие на его производительность. Методы определения нормативов основного времени на станочную операцию.

- 2.2.2. Расчет норм времени для токарных, сверлильных, фрезерных и программных операций
- 3.2.2. Проектирование технологического процесса обработки корпусной детали.

Задание №1

Перечислить затраты рабочего времени, образующих штучное время и дать определения каждой единицы затрат времени.

Образец ответа:

В норму штучного времени входит оперативное время (Основное плюс Вспомогательное время), время обслуживания рабочего места (Время технического обслуживания и Время организационного обслуживания) и время на отдых и личные надобности.

Оперативное время — это время, затрачиваемое на непосредственное выполнение заданной работы. Оно подразделяется на технологическое (основное) и вспомогательное время.

Основным является время, затрачиваемое рабочим на качественное или количественное изменение предмета труда, т. е. на изменение формы, размеров, внешнего вида, структуры и свойств, состояния и положения обрабатываемого предмета труда в пространстве, которое повторяется либо с каждой обрабатываемой деталью (в сборочных процессах — сборочной единицей), либо с каждой одновременно обрабатываемой (изготовляемой, собираемой) технологической установочной партией деталей (изделий).

Вспомогательным является время, затрачиваемое исполнителем на действия, обеспечивающие выполнение основной работы. К этому виду времени относятся затраты времени на установку детали, загрузку машины, приемы, связанные с управлением оборудования, контрольными измерениями и др. Оно повторяется либо с каждой обрабатываемой (собираемой) единицей продукции, либо (периодически) с определенным объемом продукции.

Время обслуживания рабочего места — это время, которое рабочий затрачивает на поддержание рабочего места в состоянии, обеспечивающем высокопроизводительную работу. Это время подразделяется на время технического и время организационного обслуживания.

Время технического обслуживания — это время на уход за оборудованием и поддержание в рабочем состоянии инструмента (подналадка станка, смена затупившегося инструмента, уборка стружки в процессе работы и др.) для выполнения конкретной работы.

Время организационного обслуживания — это время, затрачиваемое рабочим на поддержание рабочего места в рабочем состоянии (протирка оборудования, удаление отходов с рабочего места и т. д.), которое не связано с конкретно выполняемой операцией.

Оценка	Показатели оценки	
5	Даны определения семи единиц затрат рабочеого времени	
4	Даны определения шести единиц затрат рабочеого времени	
	Даны определения от трех до пяти единиц затрат рабочеого времени	

Дидактическая единица: 2.5 использовать методику нормирования трудовых процессов

Занятие(-я):

- 3.1.8.Проектирование маршрута обработки детали типа "Вал"
- 3.1.9.Проектирование технологического процесса механической обработки детали типа "Вал"
- 3.2.2.Проектирование технологического процесса обработки корпусной детали.

Задание №1

Рассчитать штучное время на операции технологического процесса механической обработки детали

Оценка	Показатели оценки	
5	Рассчитано штучное время на семь операций технологического процесса механической обработки детали	
4	Рассчитано штучное время на шесть операций технологического процесса механической обработки детали	
3	Рассчитано штучное время на три - пять операций технологического процесса механической обработки детали	

2.10 Текущий контроль (ТК) № 10

Тема занятия: 3.2.4. Произведение расчетов послеоперационных расходов сырья, материалов, инструментов и энергии

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Проверочная работа.

Дидактическая единица: 2.6 производить расчет послеоперационных расходов сырья, материалов, инструментов и энергии

Занятие(-я):

3.2.3. Произведение расчетов послеоперационных расходов сырья, материалов, инструментов и энергии

Задание №1

Расчитать норма расход (Нр) режущего инструмента (кроме протяжек) на 1000 деталей (шт.)

Образец ответа:

$$H_{\rm p} = \frac{1000K_{\rm c.y}}{kN},\tag{2.1}$$

где Kc у — коэффициент случайной убыли инструмента; k — количество переточек инструмента; N — стойкость инструмента между переточками, в количестве обработанных деталей.

$$N = \frac{60T_c K_{\text{ch}}}{\Sigma t_o}, \qquad (2.2)$$

где Tc — стойкость инструмента между переточками, ч (принимается по таблицам для конкретного вида инструмента); Kch — коэффициент, учитывающий постепенное снижение стойкости инструмента в зависимости от количества обрабатываемых деталей по мере увеличения числа переточек (табл. 2.1); Zf0 — сумма основных времен, ч (время обработки одной или нескольких поверхностей одним и тем же инструментом на одной детали).

Таблица 2.1 Значения коэффициента Кс,,

Количество	Коэффициент Кс,,	Количество	Коэффициент <i>Кса</i>
переточек		переточек	
От 1 до 10	1,00	От 31 до 40	0,85
От 11 до 20	0,95	От 41 до 50	0,80
От 21 до 30	0,90	От 51 до 60	0,75

Оценка	Показатели оценки	
5	Расчет выполнен на все инструменты включая протяжки полностью с соблюдение всех требований	
4	Расчет выполнен на все инструменты включая протяжки полностью с не значительными отклонениями	
3	Расчет выполнен на один инструмент полностью с соблюдение всех требований	

2.11 Текущий контроль (ТК) № 11

Тема занятия: 3.2.6.Обработка деталей давлением в холодном состоянии. Электрические методы обработки. Схемы технологических наладок.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 1.2 технологические процессы производства типовых деталей машин

Занятие(-я):

- 3.2.2. Проектирование технологического процесса обработки корпусной детали.
- 3.2.3. Произведение расчетов послеоперационных расходов сырья, материалов, инструментов и энергии
- 3.2.4. Произведение расчетов послеоперационных расходов сырья, материалов, инструментов и энергии
- 3.2.5.Схемы технологических наладок. Типовой техпроцесс обработки корпуса редуктора.

Задание №1

Указать последовательность разработки технологического процесса изготовления машин.

Образец ответа:

Последовательность разработки технологического процесса изготовления машин.

- 1. Выбор типа производства изготовления машины.
- 2. Анализ служебного назначения машины, отдельных ее узлов с целью определения размерных зависимостей.
- 3. Изучение чертежей для проработки на технологичность.
- 4. Разработка технологического процесса общей сборки для определения сроков изготовления отдельных деталей и выполнения различных технических условий.
- 5. Выбор метода и формы получения заготовок, исходя из материала и программы выпуска.
- 6. Разработка экономичных технологических процессов, исходя из программы выпуска. Вносятся коррективы в ТП общей сборки и чертежи.
- 7. Планировка оборудования или рабочих мест.
- 8. Проектирование и изготовление специального оснащения (различные приспособления для изготовления, сборки и контроля; специальный режущий и мерительный инструмент).
- 9. Внедрение, исправление всех недостатков.

Оценка	Показатели оценки	
5	Указана полная последовательность разработки технологического процесса изготовления машин	
4	Последовательность разработки технологического процесса изготовления машин состоит из восьми - девяти пунктов	
3	Последовательность разработки технологического процесса изготовления машин состоит из шести - семи пунктов	

2.12 Текущий контроль (ТК) № 12

Тема занятия: 3.2.9. Предварительная обработок заготовок зубчатых колес.

Методы нарезания зубьев: метод копирования и метод обкатки. Отделочные виды обработки зубьев. Типовой технологический процесс обработки зубчатого колеса «Вал». Схемы технологических наладок.

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Проверочная работа

Дидактическая единица: 1.5 правила выбора режущего инструмента, технологической оснастки, оборудования для механической обработки в машиностроительных производствах

Занятие(-я):

- 3.2.2. Проектирование технологического процесса обработки корпусной детали.
- 3.2.6.Обработка деталей давлением в холодном состоянии. Электрические методы обработки. Схемы технологических наладок.
- 3.2.7. Технологические особенности обработки жаростойких сплавов. Способы обработки жаростойких сплавов.
- 3.2.8.Обработка отверстий на сверлильных и расточных станках. Протягивание и шлифование отверстий. Отделочные виды обработки отверстий. Обработка отверстий на сверлильных станках с ЧПУ. Схемы технологических наладок.

Задание №1

Выбрать инструментальную оснастку исходя из следующих критериев:

- 1. Должна быть целесообразна для данного типа обработки (не понижать качества и точности обработки)
- 2. Должна удовлетворять возможности установки выбранного инструмента
- 3. Должна удовлетворять возможности установки в выбранное оборудование

Оценка	Показатели оценки
5	 Оснаска удовлетворяет требованиям обработки Оснастка удовлетворяет условиям установки инструмента Оснастка удовлетворяет условиям установки в оборудование
4	 Оснаска не удовлетворяет всем необходимым требованиям обработки Оснастка удовлетворяет условиям установки инструмента Оснастка удовлетворяет условиям установки в оборудование

3	1. Оснаска удовлетворяет требованиям обработки
	2. Оснастка удовлетворяет условиям установки инструмента
	3. Оснастка удовлетворяет условиям установки в
	оборудование

2.13 Текущий контроль (ТК) № 13

Тема занятия: 4.2.1.Классификация сборочных соединений. Сборка узлов подшипника. Сборка зубчатых зацеплений. Сборка резьбовых соединений.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Опрос во время защиты практической работы

Дидактическая единица: 1.4 методика проектирования станочных и сборочных операций

Занятие(-я):

- 3.2.2. Проектирование технологического процесса обработки корпусной детали.
- 3.2.9.Предварительная обработок заготовок зубчатых колес. Методы нарезания зубьев: метод копирования и метод обкатки. Отделочные виды обработки зубьев. Типовой технологический процесс обработки зубчатого колеса «Вал». Схемы технологических наладок.
- 4.1.1.Сборочные процессы. Особенности сборки, как заключительного этапа изготовления изделия.
- 4.1.2. Сборочные размерные цепи. Методы сборки. Подготовка деталей к сборке.
- 4.1.3.Исходные данные для проектирования технологического процесса сборки. Базовые элементы сборки.
- 4.1.4. Технологический процесс сборки и его элементы. Разработка технологической схемы сборки изделия.
- 4.1.5.Особенности нормирования сборочных работ.

Задание №1

Выполнить описание технологического процесса сборки узла

Оценка	Показатели оценки	
5	 Все операции выполнены последовательно и с необходимыми параметрами, в соответствии с методикой; Количество конструктивных элементов соответсвует чертежу; Все размеры модели соответствуют чертежу 	
4	 70% операцийи выполнены последовательно и с необходимыми параметрами, в соответствии с методикой; 70% конструктивных элементов соответсвует чертежу; 70% размеров модели соответствуют чертежу 	

3	1. 50% операции выполнены последовательно и с	
	необходимыми параметрами, в соответствии с методикой;	
	2. 40% конструктивных элементов соответсвует чертежу;	
	3. 30% размеров модели соответствуют чертежу	

Дидактическая единица: 1.7 технологическая документация, правила ее оформления, нормативные документы по стандартизации **Занятие(-я):**

- 1.3.7.Системы автоматизированного проектирования технологических процессов (САПР ТП)
- 3.1.9.Проектирование технологического процесса механической обработки детали типа "Вал"
- 3.2.2. Проектирование технологического процесса обработки корпусной детали.

Задание №1

Спроектировать технологический процесс сборки узла

Оценка	Показатели оценки	
5	Технологический процесс спроектирован в соответствии со стандартами ГОСТ 3.1702-79, ГОСТ 3.1128-93	
4	В спроектированном технологическом процессе имеется до трех отклонений от стандартов ГОСТ 3.1702-79 и ГОСТ 3.1128-93	
3	В спроектированном технологическом процессе имеется до шести отклонений от стандартов ГОСТ 3.1702-79 и ГОСТ 3.1128-93	

Дидактическая единица: 1.6 методика нормирования трудовых процессов **Занятие(-я):**

4.1.5.Особенности нормирования сборочных работ.

Задание №1

Дать определения основного (технологического) времени (То),

вспомогательноговремени (Тв), **подготовительно - заключительного**времени (Тпз), времени организационного обслуживания (Торг) и времени технического обслуживания (Ттех).

Образец ответа:

Основным является время, затрачиваемое рабочим на качественное или количественное изменение предмета труда, т. е. на изменение формы, размеров, внешнего вида, структуры и свойств, состояния и положения обрабатываемого предмета труда в пространстве.

Вспомогательным является время, затрачиваемое исполнителем на действия, обеспечивающие выполнение основной работы. К этому виду времени относятся

затраты времени на установку и снятие детали, загрузку машины, приемы, связанные с управлением оборудованием, контрольными измерениями и др. Подготовительно-заключительное время - это время, затрачиваемое на подготовку исполнителя или исполнителей и средств технического оснащения к выполнению технологической операции и приведение последних в порядок после окончания смены и (или) выполнения этой операции для партии предметов труда (получение наряда на работу, инструмента, приспособлений, сдача их после выполнения производственного задания и т. д.).

Время технического обслуживания - это время на уход за оборудованием и поддержание в рабочем состоянии инструмента (подналадка станка, смена затупившегося инструмента, уборка стружки в процессе работы и др.) для выполнения конкретной работы.

Время организационного обслуживания - это время, затрачиваемое рабочим на поддержание рабочего места в рабочем состоянии (протирка оборудования, удаление отходов с рабочего места и т. д.), которое не связано с конкретно выполняемой операцией.

Оценка	Показатели оценки	
5	Ц аны пять определений	
4	Даны четыре определения	
3	Даны три определения	

Дидактическая единица: 2.3 применять методику проектирования станочных и сборочных операций

Занятие(-я):

- 3.2.2. Проектирование технологического процесса обработки корпусной детали.
- 4.1.6. Проектирование технологического процесса сборки изделия.

Задание №1

Разработать технологический процесс сборки узла с применением прикладного программного обеспечения разработки технологических процессов изготовления деталей

Оценка	Показатели оценки	
5	При разработке технологического процесса использовались базы	
	данных типовых технологических	
	процессов прикладного программного обеспечения разработки	
	технологических процессов изготовления	
	деталей, сборки узлов и агрегатов планера летательного аппарата	

4	При разработке технологического процесса использовались базы	
данных типовых технологических		
процессов прикладного программного обеспечения разраб		
технологических процессов изготовления		
деталей, сборки узлов и агрегатов планера летательного		
аппарата. По технологическому процессу есть ряд недочето		
	отсутствие не более двух операций	
3	Технологический процесс разработан всего на 30%	

2.14 Текущий контроль (ТК) № 14

Тема занятия: 5.1.6. Разработка схемы планировки участка сборочного цеха.

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: Опрос во время защиты практической работы

Дидактическая единица: 2.4 проектировать участки механических и сборочных цехов

Занятие(-я):

5.1.5. Разработка схемы планировки участка механического цеха.

Задание №1

Рассчитать количество основного технологического оборудования на участке и коэффициент его загрузки.

Годовая программа выпуска - 30000 шт. Производство - массовое (задания по вариантам).

Алгоритм выполнения задания:

- Рассчитайте количество станков для каждой операции
- Определите коэффициент загрузки оборудования для каждой операции
- Определите общий коэффициент загрузки

Справочные данные:

Дк – количество календарных дней в году (365).

Дв - количество выходных дней в году (104).

Дпр - количество праздничных дней в году (8).

Ts – продолжительность рабочей смены (8).

Тсокр – количество часов сокращения рабочей смены в предпраздничные дни (6).

C – количество смен (2).

 $K_B - \kappa оэффициент выполнения норм. <math>K_B = 1,1;$

а - процент потерь времени работы на ремонт и регламентированные перерывы (3%).

Оценка	Показатели оценки

5	Рассчитано количество станков для семи операций, определен коэффициент загрузки оборудования для каждой операции и определен общий коэффициент загрузки
4	Рассчитано количество станков для шести операций, определен коэффициент загрузки оборудования для каждой операции и определен общий коэффициент загрузки
3	Рассчитано количество станков для пяти операций, определен коэффициент загрузки оборудования для каждой операции и определен общий коэффициент загрузки

Дидактическая единица: 2.5 использовать методику нормирования трудовых процессов

Занятие(-я):

- 4.1.6. Проектирование технологического процесса сборки изделия.
- 4.2.4. Технический контроль и испытание узлов и машин. Окраска и консервирование.

Задание №1

Спроектировать схему планировки участка механического цеха

Оценка	Показатели оценки	
5	Спроектирована схема планировки участка механического цеха в соответствии с требованиями ЕСКД и ЕСТД	
4	Спроектирована схема планировки участка механического цеха с нарушениями требований ЕСКД и ЕСТД - до трех нарушений	
3	Спроектирована схема планировки участка механического цеха с нарушениями требований ЕСКД и ЕСТД - до шести нарушений	

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

№ семестра	Вид промежуточной аттестации
5	Экзамен

Экзамен может быть выставлен автоматически по результатам текущих контролей
екущий контроль №1
Гекущий контроль №2
Секущий контроль №3
екущий контроль №4
Гекущий контроль №5
Гекущий контроль №6
Гекущий контроль №7
екущий контроль №8
екущий контроль №9
Гекущий контроль №10
екущий контроль №11
Гекущий контроль №12
Гекущий контроль №13
екущий контроль №14

Метод и форма контроля: Письменный опрос (Опрос)

Вид контроля: Экзамен проводится по билетам, в каждом билете два теоретических вопроса и задача

Дидактическая единица для контроля:

1.1 методика отработки детали на технологичность

Задание №1 (из текущего контроля)

Дать определение технологичности конструкции, перечислить технологические требования, предъявляемые к деталям и дать качественную оценку технологичности конструкции выданной детали

Образец ответа:

Технологичность конструкции — это совокупность свойств конструкции детали (изделия), определяющих ее приспособленность к достижению оптимальных затрат при производстве, эксплуатации и ремонте для заданных показателей качества, объема выпуска и условий выполнения работ.

Технологические требования, предъявляемые к деталям:

- 1. Деталь должна быть жесткой и прочной, стенки и перегородки должны быть достаточных размеров, чтобы при закреплении заготовки и в процессе обработки не возникали деформации а следовательно и погрешность обработки.
- 2. Базовые поверхности детали должны иметь достаточную протяженность позволяющую осуществить полную механическую обработку от одной неизменной базы.
- 3. Обрабатываемые поверхности должны быть открыты и доступны для подхода режущего инструмента при врезании и отхода при выходе.
- 4. Внешняя форма детали должна давать возможность одновременно обрабатывать несколько наружных поверхностей путем много инструментальной обработки.
- 5. Отверстия корпусных деталей по возможности должны иметь простую геометрическую форму без кольцевых канавок и фасок.
- 6. Возможность сквозной обработки при помощи расточных инструментов.
- 7. Отверстия, оси которых расположены под углом относительно стенки обрабатываемой детали, нежелательны. При сверлении подобных отверстий создаются неудобства резания, так как режущие кромки начинают резать не одновременно.
- 8. В стенках и перегородках не желательны различные окна, прерывающие отверстия и т.д.
- 9. Крепежные отверстия деталей должны быть стандартными.

Оценка	Показатели оценки
5	Дано определение технологичности конструкции в соответствии с ГОСТ 14.205-83, перечислены девять технологических требований, предъявляемых к конструкции детали и дана качественная оценка технологичности детали в целом
4	Дано определение технологичности конструкции в соответствии с ГОСТ 14.205-83, перечислены от семи до восьми технологических требований, предъявляемые к деталям и дана качественная оценка технологичности конструкции детали с незначительными ошибками
3	Перечислены от четырех до шести технологических требований, предъявляемые к деталям и дана не полная качественная оценка технологичности конструкции выданной детали

Дидактическая единица для контроля:

1.2 технологические процессы производства типовых деталей машин **Задание №1 (из текущего контроля)**

1. Дать определения производственного и технологического процесса, перечислить элементы технологического процесса и дать определение каждого элемента.

Образец ответа:

Производственный процесс – это совокупность всех действий людей и орудий производства, необходимых на данном предприятии для изготовления или ремонта, выпуска продукции

Технологический процесс — это часть производственного процесса, включающая в себя последовательное изменение формы, размеров, внешнего вида или внутренних свойств материалов или полуфабрикатов для получения изделий с заданными параметрами и их контроль

Элементы технологического процесса (далее - ТП).

- **1. Технологическая операция (далее ТО)** это законченная часть ТП, выполняемая на одном рабочем месте над одним или несколькими одновременно обрабатываемыми или собираемыми изделиями одним или несколькими рабочими.
- **2. Технологический установ** это часть ТО, выполняемая при неизменном закреплении обрабатываемых заготовок или собираемых изделий.
- **3. Технологический переход** законченная часть ТО, выполняемая одними и теми же средствами технологического оснащения при постоянных режимах обработки и установки (т.е. выполняется одним инструментом).
- **4. Вспомогательный перехо**д это законченная часть ТО, не сопровождаемая обработкой, но необходимая для выполнения данной операции (например, установка или снятие заготовки, замена инструмента, контрольный замер).
- 5. **Технологическая позиция** это фиксированное положение, которое занимает неизменно закрепленная заготовка относительно неподвижной части оборудования или инструмента для выполнения определенной части операции.
- **6. Рабочий ход** это законченная часть перехода, состоящая из однократного перемещения инструмента относительно заготовки и сопровождаемая изменением формы, размеров, шероховатости поверхности или свойств заготовки.
- **7. Вспомогательный ход** это законченная часть перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемая изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимая для выполнения рабочего хода.

Оценка	Показатели оценки

5	Даны определения производственного и технологического процесса, перечислены семь элементов технологического процесса и даны определения каждого элемента
4	Даны определения производственного и технологического процесса, перечислены шесть элементов технологического процесса и даны определения каждого перечисленного элемента
3	Даны определения производственного и технологического процесса, перечислены от четырех до пяти элементов технологического процесса и даны определения каждого перечисленного элемента

Указать последовательность разработки технологического процесса изготовления деталей

Образец ответа:

Последовательность разработки технологического процесса изготовления деталей.

- 1. Группирование деталей по сходным конструктивно-технологическим признакам для создания типовых технологических процессов.
- 2. Изучение размеров с допусками, параметрами шероховатости, отклонениями формы и расположения поверхностей для создания схем базирования. Наиболее ответственно необходимо подходить к выбору первых черновых и чистовых баз и баз для обработки поверхностей, связанных жесткими допусками расположения поверхностей.
- 3. Разработка маршрута обработки последовательности обработки поверхностей с определением вида обработки.
- 4. Расчет припусков с определением межоперационных размеров, при этом определяется целесообразность разделения обработки на черновую и чистовую в отдельные операции.
- 5. Выбор оборудования и оснащения.
- 6. Детализация обработки в операции составление переходов с расчетом режимов обработки и нормирования.
- 7. Определение технико-экономической эффективности ПТ.
- 8. Оформление по ГОСТам (ОСТам, СТП) в соответствии с требованиями ЕСТД.

Оценка	Показатели оценки
5	Указана полная последовательность разработки технологического процесса изготовления деталей
4	Последовательность разработки технологического процесса изготовления деталей состоит из семи пунктов

3	Последовательность разработки технологического процесса
	изготовления деталей состоит из пяти - шести пунктов

Указать последовательность разработки технологического процесса изготовления машин.

Образец ответа:

Последовательность разработки технологического процесса изготовления машин.

- 1. Выбор типа производства изготовления машины.
- 2. Анализ служебного назначения машины, отдельных ее узлов с целью определения размерных зависимостей.
- 3. Изучение чертежей для проработки на технологичность.
- 4. Разработка технологического процесса общей сборки для определения сроков изготовления отдельных деталей и выполнения различных технических условий.
- 5. Выбор метода и формы получения заготовок, исходя из материала и программы выпуска.
- 6. Разработка экономичных технологических процессов, исходя из программы выпуска. Вносятся коррективы в ТП общей сборки и чертежи.
- 7. Планировка оборудования или рабочих мест.
- 8. Проектирование и изготовление специального оснащения (различные приспособления для изготовления, сборки и контроля; специальный режущий и мерительный инструмент).
- 9. Внедрение, исправление всех недостатков.

Оценка	Показатели оценки
5	Указана полная последовательность разработки
	технологического процесса изготовления машин
4	Последовательность разработки технологического процесса
	изготовления машин состоит из восьми - девяти пунктов
3	Последовательность разработки технологического процесса
	изготовления машин состоит из шести - семи пунктов

Дидактическая единица для контроля:

1.3 методика выбора рационального способа изготовления заготовок

Задание №1 (из текущего контроля)

Перечислить условия выбора заготовок

Образец ответа:

Условия выбора заготовок:

- 1. Масса и габаритные размеры деталей.
- 2. Материал деталей.

Например: АЛ2 – алюминий литейный – возможно только литье; В93 – прокат, штамповка, поковка, а литье невозможно и т.д.

- 3. Тип производства.
- 4. Конфигурация заготовки.
- 5. Экономические факторы.

Выбирают ту заготовку, которая обеспечивает минимальные затраты на производство заготовки и ее последующую механообработку.

6. Технические факторы.

Без необходимости не используются очень сложные процессы производства заготовки или ее последующей обработки из-за повышения риска брака и усложнения операций производства.

Оценка	Показатели оценки
5	Перечислено 6 условий выбора заготовок
4	Перечислено 5 условий выбора заготовок
3	1. Перечислено от 2 до 4 условий выбора заготовок

Дидактическая единица для контроля:

1.4 методика проектирования станочных и сборочных операций

Задание №1 (из текущего контроля)

Составить технологический маршрут изготовления детали "Вал" Образец ответа:

Типовой маршрут обработки вала с термообработкой:

- 1. Подрезка торцев и центрование.
- 2. Обработка в центрах.

Предварительная обработка наружных поверхностей примерно половины детали, переустановка и обработка оставшейся части. Разделение производят по наибольшей ступени.

- 3. Фрезерование различных лысок, пазов, скосов. Сверление отверстий, перпендикулярных оси вращения детали. Предварительное нарезание зубьев, шлицев, резьбы.
- 4. Термообработка.
- 5. Для очень точных деталей прошлифовывают центра. Шлифование посадочных мест с хомутиком
- 6. Доводочные операции сложных поверхностей: зубья, шлицы, резьбы шлифование и притирка.

Оценка	Показатели оценки
5	Составлен технологический маршрут обработки детали "Вал" в
	соответствии с типовым маршрутом обработки без ошибок

Составлен технологический маршрут обработки детали "Вал" в соответствии с типовым маршрутом обработки с одной ошибкой
Составлен технологический маршрут обработки детали "Вал" в соответствии с типовым маршрутом обработки с двумя ошибками

Выполнить описание технологического процесса сборки узла

Оценка	Показатели оценки
5	1. Все операции выполнены последовательно и с
	необходимыми параметрами, в соответствии с методикой;
	2. Количество конструктивных элементов соответсвует
	чертежу;
	3. Все размеры модели соответствуют чертежу
4	1. 70% операцийи выполнены последовательно и с
	необходимыми параметрами, в соответствии с методикой;
	2. 70% конструктивных элементов соответсвует чертежу;
	3. 70% размеров модели соответствуют чертежу
3	1. 50% операции выполнены последовательно и с
	необходимыми параметрами, в соответствии с методикой;
	2. 40% конструктивных элементов соответсвует чертежу;
	3. 30% размеров модели соответствуют чертежу

Дидактическая единица для контроля:

1.5 правила выбора режущего инструмента, технологической оснастки, оборудования для механической обработки в машиностроительных производствах Задание №1 (из текущего контроля)

Перечислете виды режущих инструментов и дайте их описание Образец ответа:

- Резцы: инструмент однолезвийного типа, позволяющий выполнять металлообработку с возможностью разнонаправленного движения подачи;
- **Фрезы**: инструмент, при использовании которого обработка выполняется вращательным движением с траекторией, имеющей неизменный радиус, и движением подачи, которое по направлению не совпадает с осью вращения;
- Сверла: режущий инструмент осевого типа, который используется для создания отверстий в материале или увеличении диаметра уже имеющихся

отверстий. Обработка сверлами осуществляется вращательным движением, дополненным движением подачи, направление которого совпадает с осью вращения;

- Зенкеры: инструмент осевого типа, с помощью которого корректируются размеры и форма имеющихся отверстий, а также увеличивается их диаметр;
- Развертки: осевой инструмент, который применяется для чистовой обработки стенок отверстий (уменьшения их шероховатости);
- **Цековки**: металлорежущий инструмент, также относящийся к категории осевых и используемый для обработки торцовых или цилиндрических участков отверстий;
- Плашки: используются для нарезания наружной резьбы на заготовках;
- **Метчики**: также применяются для нарезания резьбы но, в отличие от плашек, не на цилиндрических заготовках, а внутри отверстий;
- Ножовочные полотна: инструмент многолезвийного типа, имеющий форму металлической полосы с множеством зубьев, высота которых одинакова. Ножовочные полотна используются для отрезания части заготовки или создания в ней пазов, при этом главное движение резания является поступательным;
- Долбяки: применяются для зуботочения или зубодолбления шлицев валов, зубчатых колес, других деталей;
- **Шеверы**: инструмент, название которого происходит от английского слова «shaver» (в переводе «бритва»). Он предназначен для чистовой обработки зубчатых колес, которая выполняется методом «скобления»;
- Абразивный инструмент: бруски, круги, кристаллы, крупные зерна или порошок абразивного материала. Инструмент, входящий в данную группу, применяется для чистовой обработки различных деталей.

Оценка	Показатели оценки
5	Названы все виды инструмента и дано их описание
4	Названо только десять видов инструментов и их описание
3	Названо только шесть видов инструментов и их описание

Задание №2 (из текущего контроля)

Выбрать инструментальную оснастку исходя из следующих критериев:

- 1. Должна быть целесообразна для данного типа обработки (не понижать качества и точности обработки)
- 2. Должна удовлетворять возможности установки выбранного инструмента
- 3. Должна удовлетворять возможности установки в выбранное оборудование

Оценка	Показатели оценки
5	 Оснаска удовлетворяет требованиям обработки Оснастка удовлетворяет условиям установки инструмента Оснастка удовлетворяет условиям установки в оборудование
4	 Оснаска не удовлетворяет всем необходимым требованиям обработки Оснастка удовлетворяет условиям установки инструмента Оснастка удовлетворяет условиям установки в оборудование
3	 Оснаска удовлетворяет требованиям обработки Оснастка удовлетворяет условиям установки инструмента Оснастка удовлетворяет условиям установки в оборудование

Дидактическая единица для контроля:

1.6 методика нормирования трудовых процессов

Задание №1 (из текущего контроля)

Дать определения **основного** (технологического) времени (То), **вспомогательного** времени (Тв), **подготовительно - заключительного**времени (Тпз), времени организационного обслуживания (Торг) и времени технического обслуживания (Ттех).

Образец ответа:

Основным является время, затрачиваемое рабочим на качественное или количественное изменение предмета труда, т. е. на изменение формы, размеров, внешнего вида, структуры и свойств, состояния и положения обрабатываемого предмета труда в пространстве.

Вспомогательным является время, затрачиваемое исполнителем на действия, обеспечивающие выполнение основной работы. К этому виду времени относятся затраты времени на установку и снятие детали, загрузку машины, приемы, связанные с управлением оборудованием, контрольными измерениями и др.

Подготовительно-заключительное время - это время, затрачиваемое на подготовку исполнителя или исполнителей и средств технического оснащения к выполнению технологической операции и приведение последних в порядок после окончания смены и (или) выполнения этой операции для партии предметов труда (получение наряда на работу, инструмента, приспособлений, сдача их после выполнения производственного задания и т. д.).

Время технического обслуживания - это время на уход за оборудованием и поддержание в рабочем состоянии инструмента (подналадка станка, смена затупившегося инструмента, уборка стружки в процессе работы и др.) для

выполнения конкретной работы.

Время организационного обслуживания - это время, затрачиваемое рабочим на поддержание рабочего места в рабочем состоянии (протирка оборудования, удаление отходов с рабочего места и т. д.), которое не связано с конкретно выполняемой операцией.

Оценка	Показатели оценки
5	Даны пять определений
4	Даны четыре определения
3	Даны три определения

Задание №2 (из текущего контроля)

Перечислить затраты рабочего времени, образующих штучное время и дать определения каждой единицы затрат времени.

Образец ответа:

В норму штучного времени входит оперативное время (Основное плюс Вспомогательное время), время обслуживания рабочего места (Время технического обслуживания и Время организационного обслуживания) и время на отдых и личные надобности.

Оперативное время — это время, затрачиваемое на непосредственное выполнение заданной работы. Оно подразделяется на технологическое (основное) и вспомогательное время.

Основным является время, затрачиваемое рабочим на качественное или количественное изменение предмета труда, т. е. на изменение формы, размеров, внешнего вида, структуры и свойств, состояния и положения обрабатываемого предмета труда в пространстве, которое повторяется либо с каждой обрабатываемой деталью (в сборочных процессах — сборочной единицей), либо с каждой одновременно обрабатываемой (изготовляемой, собираемой) технологической установочной партией деталей (изделий).

Вспомогательным является время, затрачиваемое исполнителем на действия, обеспечивающие выполнение основной работы. К этому виду времени относятся затраты времени на установку детали, загрузку машины, приемы, связанные с управлением оборудования, контрольными измерениями и др. Оно повторяется либо с каждой обрабатываемой (собираемой) единицей продукции, либо (периодически) с определенным объемом продукции.

Время обслуживания рабочего места — это время, которое рабочий затрачивает на поддержание рабочего места в состоянии, обеспечивающем высокопроизводительную работу. Это время подразделяется на время технического и время организационного обслуживания.

Время технического обслуживания — это время на уход за оборудованием и

поддержание в рабочем состоянии инструмента (подналадка станка, смена затупившегося инструмента, уборка стружки в процессе работы и др.) для выполнения конкретной работы.

Время организационного обслуживания — это время, затрачиваемое рабочим на поддержание рабочего места в рабочем состоянии (протирка оборудования, удаление отходов с рабочего места и т. д.), которое не связано с конкретно выполняемой операцией.

Оценка	Показатели оценки
5	Даны определения семи единиц затрат рабочеого времени
4	Даны определения шести единиц затрат рабочеого времени
3	Даны определения от трех до пяти единиц затрат рабочеого времени

Дидактическая единица для контроля:

1.7 технологическая документация, правила ее оформления, нормативные документы по стандартизации

Задание №1 (из текущего контроля)

Классифицировать технологические процессы. Перечислить виды технологических процессов и дать их определения

Образец ответа:

Классификация технологических процессов по степени унификации:

- а) единичный это технологический процесс изготовления или ремонта определенного изделия независимо от типа производства;
- б) типовой это технологический процесс обработки для группы изделий со сходными конструктивными и технологическими признаками;
- в) групповой это технологический процесс для изготовления или ремонта группы изделий с различными конструктивными, но со сходными технологическими признаками.

Классификация технологических процессов по прогрессивности:

- а) перспективный это технологический процесс, методы и средства достижения которого предстоит освоить полностью или частично на данном предприятии (т.е. ТП, который необходимо освоить);
- б) рабочий это ТП, который проверен и изучен на данном предприятии. Классификация технологических процессов по стадии разработки:
- а) проектный это ТП, который требует проверки;
- б) временный это ТП, используемый для временной замены существующего ТП (из-за выхода из строя оборудования или оснащения), а так же в аварийных ситуациях;
- в) стандартный это ТП, который регламентирован стандартом (ГОСТом, ОСТом,

$CT\Pi$).

Классификация технологических процессов по степени детализации описания:

- а) маршрутное описание ТП это сокращенное описание всех операций в последовательности их выполнения (допускается не указывать ряд технологических параметров, не разделять на переходы). Этот способ применяется в единичном производстве, при разработке временных и простых ТП. При написании используется стандартная форма маршрутная карта (МК).
- б) операционное описание ТП это полное описание всех операций с указанием переходов, режимов резания, норм времени; каждая операция разрабатывается на отдельных операционных картах (ОК). Рекомендуется к каждому установу разрабатывать карту эскизов (КЭ) с указанием обрабатываемых поверхностей, выполняемых размеров и шероховатости с элементами базирования и закрепления. Применяется в серийном и массовом производстве.
- в) маршрутно-операционное описание это сокращенное описание простых операций, как при маршрутном описании и подробное описание сложных или ответственных операций, как при операционном описании. Применяется в мелкосерийном производстве.

Оценка	Показатели оценки			
5	Перечислены от десяти до одиннадцати видов технологических			
	процессов и даны их определения			
4	Перечислены от восьми до девяти видов технологических			
	процессов и даны их определения			
3	Перечислены от четырех до семи видов технологических			
	процессов и даны их определения			

Задание №2 (из текущего контроля)

Спроектировать технологический процесс сборки узла

Оценка	Показатели оценки			
5	Технологический процесс спроектирован в соответствии со стандартами ГОСТ 3.1702-79, ГОСТ 3.1128-93			
4	В спроектированном технологическом процессе имеется до трех отклонений от стандартов ГОСТ 3.1702-79 и ГОСТ 3.1128-93			
3	В спроектированном технологическом процессе имеется до шести отклонений от стандартов ГОСТ 3.1702-79 и ГОСТ 3.1128-93			

Дидактическая единица для контроля:

2.1 выбирать последовательность обработки поверхностей деталей **Задание №1 (из текущего контроля)**

Указать последовательность обработки поверхностей.

Образец ответа:

Приобработке деталей на токарных станках с ЧПУ с закреплением их в патроне рекомендуется следующий порядок обработки:

- 1. центрование (для отверстий диаметром менее 20 мм);
- 2. сверление сверлом меньшего диаметра (если используются два сверла);
- 3. сверление сверлом большего диаметра;
- 4. черновая обработка основных поверхностей, подрезание внешнего торца предварительно и окончательно, обработка основных внутренних и наружных поверхностей;
- 5. чистовая обработка основных внутренних и наружных поверхностей;
- 6. обработка дополнительных поверхностей, расположенных в отверстии, на торце и снаружи.

При обработке с закреплением в патроне и поджатием задним центром порядок обработки следующий:

- 1. черновая обработка основных форм наружной поверхности;
- 2. черновая и чистовая обработка дополнительных форм поверхности;
- 3. чистовая обработка основных форм;
- 4. чистовая обработка дополнительных форм, не нуждающихся в черновой обработке.

При обработке корпусных деталей на многооперационных станках рекомендуется следующий порядок выполнения операций:

- 1. черновая обработка деталей с двух-трех сторон (в качестве базы используются достаточно большие плоскости);
- 2. черновая обработка остальных сторон детали с установкой по обработанным поверхностям, создание баз для последующей обработки;
- 3. чистовая обработка базовой и противобазовой поверхностей и всех элементов (пазов, уступов, отверстий) на этих плоскостях;
- 4. чистовая обработка остальных сторон детали.

Оценка	Показатели оценки		
5	Указана последовательность обработки поверхностей для 3-х вариантов закрепления деталей		
4	Указана последовательность обработки поверхностей для 2-х вариантов закрепления деталей		
3	Указана последовательность обработки поверхностей для 1-го варианта закрепления деталей		

Дидактическая единица для контроля:

2.2 применять методику отработки деталей на технологичность

Задание №1 (из текущего контроля)

Дать определение технологичности конструкции, перечислить технологические требования, предъявляемые к деталям и дать качественную оценку технологичности конструкции выданной детали

Образец ответа:

Технологичность конструкции — это совокупность свойств конструкции детали (изделия), определяющих ее приспособленность к достижению оптимальных затрат при производстве, эксплуатации и ремонте для заданных показателей качества, объема выпуска и условий выполнения работ.

Технологические требования, предъявляемые к деталям:

- 1. Деталь должна быть жесткой и прочной, стенки и перегородки должны быть достаточных размеров, чтобы при закреплении заготовки и в процессе обработки не возникали деформации а следовательно и погрешность обработки.
- 2. Базовые поверхности детали должны иметь достаточную протяженность позволяющую осуществить полную механическую обработку от одной неизменной базы.
- 3. Обрабатываемые поверхности должны быть открыты и доступны для подхода режущего инструмента при врезании и отхода при выходе.

- 4. Внешняя форма детали должна давать возможность одновременно обрабатывать несколько наружных поверхностей путем много инструментальной обработки.
- 5. Отверстия корпусных деталей по возможности должны иметь простую геометрическую форму без кольцевых канавок и фасок.
- 6. Возможность сквозной обработки при помощи расточных инструментов.
- 7. Отверстия, оси которых расположены под углом относительно стенки обрабатываемой детали, нежелательны. При сверлении подобных отверстий создаются неудобства резания, так как режущие кромки начинают резать не одновременно.
- 8. В стенках и перегородках не желательны различные окна, прерывающие отверстия и т.д.
- 9. Крепежные отверстия деталей должны быть стандартными.

Оценка	Показатели оценки			
5	Дано определение технологичности конструкции в соответствии с ГОСТ 14.205-83, перечислены девять технологических требований, предъявляемых к конструкции детали и дана качественная оценка технологичности детали в целом			
4	Дано определение технологичности конструкции в соответствии с ГОСТ 14.205-83, перечислены от семи до восьми технологических требований, предъявляемые к деталям и дана качественная оценка технологичности конструкции детали с незначительными ошибками			
3	Перечислены от четырех до шести технологических требований, предъявляемые к деталям и дана не полная качественная оценка технологичности конструкции выданной детали			

Рассчитать коэффициенты точности, шероховатости и унификации для выданной детали, дать количественную оценку технологичности по всем коэффициентам и сделать общий вывод о конструкции детали

Оценка	Показатели оценки			
5	Рассчитаны коэффициенты точности, шероховатости и унификации для выданной детали, дана количественная оценка технологичности по всем коэффициентам и сделан общий вывод о конструкции детали			

4	Рассчитаны коэффициенты точности, шероховатости и унификации для выданной детали, дана количественная оценка технологичности по всем коэффициентам и сделан общий вывод о конструкции детали, но допущено до двух ошибок в расчетах			
3	Рассчитаны коэффициенты точности, шероховатости и унификации для выданной детали, дана количественная оценка технологичности по всем коэффициентам и сделан общий вывод о конструкции детали, но допущено до четырех ошибок в расчетах и имеются ошибки в общем выводе			

Дидактическая единица для контроля:

2.3 применять методику проектирования станочных и сборочных операций **Задание №1 (из текущего контроля)**

Разработать технологический процесс сборки узла с применением прикладного программного обеспечения разработки технологических процессов изготовления деталей

Оценка	Показатели оценки			
5	При разработке технологического процесса использовались базы			
	данных типовых технологических			
	процессов прикладного программного обеспечения разработки			
	технологических процессов изготовления			
	деталей, сборки узлов и агрегатов планера летательного аппарата			
4	При разработке технологического процесса использовались базы			
	данных типовых технологических			
	процессов прикладного программного обеспечения разработки			
	технологических процессов изготовления			
	деталей, сборки узлов и агрегатов планера летательного			
	аппарата. По технологическому процессу есть ряд недочетов и			
	отсутствие не более двух операций			
3	Технологический процесс разработан всего на 30%			

Дидактическая единица для контроля:

2.4 проектировать участки механических и сборочных цехов

Задание №1 (из текущего контроля)

Рассчитать количество основного технологического оборудования на участке и коэффициент его загрузки.

Годовая программа выпуска - 30000 шт. Производство - массовое (задания по вариантам).

Алгоритм выполнения задания:

- Рассчитайте количество станков для каждой операции
- Определите коэффициент загрузки оборудования для каждой операции
- Определите общий коэффициент загрузки

Справочные данные:

Дк – количество календарных дней в году (365).

Дв - количество выходных дней в году (104).

Дпр - количество праздничных дней в году (8).

Ts – продолжительность рабочей смены (8).

Тсокр – количество часов сокращения рабочей смены в предпраздничные дни (6).

C – количество смен (2).

Kв - коэффициент выполнения норм. <math>Kв = 1,1;

а - процент потерь времени работы на ремонт и регламентированные перерывы (3%).

Оценка	Показатели оценки			
5	Рассчитано количество станков для семи операций, определен коэффициент загрузки оборудования для каждой операции и определен общий коэффициент загрузки			
4	Рассчитано количество станков для шести операций, определен коэффициент загрузки оборудования для каждой операции и определен общий коэффициент загрузки			
3	Рассчитано количество станков для пяти операций, определен коэффициент загрузки оборудования для каждой операции и определен общий коэффициент загрузки			

Дидактическая единица для контроля:

2.5 использовать методику нормирования трудовых процессов

Задание №1 (из текущего контроля)

Рассчитать нормы времени То, Тв, Тпз, Торг и Ттех на операции технологического процесса.

Оценка	Показатели оценки			
5	Рассчитаны нормы времени То, Тв, Тпз, Торг и Ттех на три			
	операции технологического процесса			
4	Рассчитаны нормы времени То, Тв, Тпз, Торг и Ттех на две			
	операции технологического процесса			
3	Рассчитаны нормы времени То, Тв, Тпз, Торг и Ттех на одну			
	операцию технологического процесса			

Рассчитать штучное время на операции технологического процесса механической обработки детали

Оценка	Показатели оценки		
5	Рассчитано штучное время на семь операций технологического процесса механической обработки детали		
4	Рассчитано штучное время на шесть операций технологического процесса механической обработки детали		
3	Рассчитано штучное время на три - пять операций технологического процесса механической обработки детали		

Задание №3 (из текущего контроля)

Спроектировать схему планировки участка механического цеха

Оценка	Показатели оценки			
5	Спроектирована схема планировки участка механического цеха в соответствии с требованиями ЕСКД и ЕСТД			
4	Спроектирована схема планировки участка механического цеха с нарушениями требований ЕСКД и ЕСТД - до трех нарушений			
3	Спроектирована схема планировки участка механического цеха с нарушениями требований ЕСКД и ЕСТД - до шести нарушений			

Дидактическая единица для контроля:

2.6 производить расчет послеоперационных расходов сырья, материалов, инструментов и энергии

Задание №1 (из текущего контроля)

Расчитать норма расход (Нр) режущего инструмента (кроме протяжек) на 1000 деталей (шт.)

Образец ответа:

$$H_{\rm p} = \frac{1000K_{\rm c.y}}{kN},\tag{2.1}$$

где Kc у — коэффициент случайной убыли инструмента; k — количество переточек инструмента; N — стойкость инструмента между переточками, в количестве обработанных деталей.

$$N = \frac{60T_c K_{\text{ch}}}{\Sigma t_o}, \qquad (2.2)$$

где Tc — стойкость инструмента между переточками, ч (принимается по таблицам для конкретного вида инструмента); Kch — коэффициент, учитывающий постепенное снижение стойкости инструмента в зависимости от количества обрабатываемых деталей по мере увеличения числа переточек (табл. 2.1); Zf0 — сумма основных времен, ч (время обработки одной или нескольких поверхностей одним и тем же инструментом на одной детали).

Таблица 2.1

Значения коэффициента Кс,,

Количество	Коэффициент Кс,,	Количество	Коэффициент Кса
переточек		переточек	
От 1 до 10	1,00	От 31 до 40	0,85
От 11 до 20	0,95	От 41 до 50	0,80
От 21 до 30	0,90	От 51 до 60	0,75

Оценка	Показатели оценки
5	Расчет выполнен на все инструменты включая протяжки полностью с соблюдение всех требований
4	Расчет выполнен на все инструменты включая протяжки полностью с не значительными отклонениями
3	Расчет выполнен на один инструмент полностью с соблюдение всех требований