

Министерство образования Иркутской области Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Иркутский авиационный техникум»

УТВЕРЖДАЮ и.о. директора ГВГОУИО «ИАТ»

<u>////Ко</u>робкова Е.А.

«29» мая 2020 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

ОП.16 Применение микропроцессорных систем

специальности

09.02.07 Информационные системы и программирование

Рассмотрена цикловой комиссией ПКС №11 от 13.05.2020 г.

Председатель ЦК

Нкуд /М.А. Кудрявцева /

№	Разработчик ФИО
1	Шатурский Дмитрий Витальевич

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Область применения фонда оценочных средств (ФОС)

ФОС по дисциплине является частью программы подготовки специалистов среднего звена по специальности 09.02.07 Информационные системы и программирование

1.2. Место дисциплины в структуре ППССЗ:

ОП.00 Общепрофессиональный цикл.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины

В результате освоения дисциплины обучающийся должен	№ дидакти ческой единицы	Формируемая дидактическая единица
Знать	1.1	базовую функциональную схему МПС
	1.2	программное обеспечение микропроцессорных систем
	1.3	методы тестирования и способы отладки МПС
	1.4	состояние производства и использование МПС
Уметь	2.1	составлять программы на языке программирования для микропроцессорных систем
	2.2	производить тестирование и отладку МПС
	2.3	выбирать микроконтроллер/микропроцессор для конкретной системы управления

1.4. Формируемые компетенции:

- ОК.1 Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам
- OK.2 Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности
- OK.3 Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных

ситуациях

ОК.4 Эффективно взаимодействовать и работать в коллективе и команде ОК.5 Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста

ОК.6 Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения ОК.7 Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях

OK.8 Использовать средства физической культуры для сохранения и укрепления здоровья в процессе профессиональной деятельности и поддержания необходимого уровня физической подготовленности

ОК.9 Пользоваться профессиональной документацией на государственном и иностранном языках

2. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

2.1 Текущий контроль (ТК) № 1

Тема занятия: 1.1.5. Определение параметров микропроцессоров по маркировке

Метод и форма контроля: Практическая работа (Информационно-аналитический)

Вид контроля: Письменный

Дидактическая единица: 1.1 базовую функциональную схему МПС Занятие(-я):

- 1.1.1.Основные понятия микропроцессорной системы. Определение микропроцессора, микро-ЭВМ, микроконтроллера, других микропроцессорных средств. Архитектуры микропроцессорных систем. Классификация микропроцессоров, основные варианты их архитектуры и структуры.
- 1.1.2.Составные элементы базовой микропроцессорной системы. Характеристика интерфейсов в системе.Обмен данными с внешней средой. Буферизация и демультиплексирование шин адреса и данных.
- 1.1.4. Машинный цикл. Сброс и синхронизация модулей системы. Система команд на языке Ассемблер

Задание №1

Начертить структуру микропроцессора, указать назначение блоков, их параметры и режимы работы. Составить алгоритм обработки маскированных и немаскированных прерываний.

Оценка	Показатели оценки
3	Приведена структура микропроцессора, назначение устройств, параметры и режимы работы правильно. Не приведен алгоритм обработки маскированных и немаскированных прерываний.
4	Приведена структура микропроцессора, назначение устройств, параметры и режимы работы правильно. Приведен алгоритм обработки маскированных и немаскированных прерываний с ошибками.
5	Приведена структура микропроцессора, назначение устройств, параметры и режимы работы правильно. Приведен алгоритм обработки маскированных и немаскированных прерываний правильно.

Дидактическая единица: 2.3 выбирать микроконтроллер/микропроцессор для конкретной системы управления

Занятие(-я):

1.1.1.Основные понятия микропроцессорной системы. Определение микропроцессора, микро-ЭВМ, микроконтроллера, других микропроцессорных

средств. Архитектуры микропроцессорных систем. Классификация микропроцессоров, основные варианты их архитектуры и структуры.

1.1.2.Составные элементы базовой микропроцессорной системы. Характеристика интерфейсов в системе.Обмен данными с внешней средой. Буферизация и демультиплексирование шин адреса и данных.

Задание №1

Выбрать микроконтроллер/микропроцессор для конкретной системы управления (индивидуальное задание)

Оценка	Показатели оценки	
3	Микроконтроллер/микропроцессор для конкретной системы управления выбран неправильно с ошибками.	
4	Микроконтроллер/микропроцессор для конкретной системы управления выбран правильно, но с ошибками.	
5	Микроконтроллер/микропроцессор для конкретной системы управления выбран правильно.	

2.2 Текущий контроль (ТК) № 2

Тема занятия: 1.1.9. Принципы работы со стеком на языке ассемблера.

Метод и форма контроля: Практическая работа (Информационно-аналитический) **Вид контроля:** письменный

Дидактическая единица: 2.1 составлять программы на языке программирования для микропроцессорных систем

Занятие(-я):

- 1.1.4. Машинный цикл. Сброс и синхронизация модулей системы. Система команд на языке Ассемблер
- 1.1.6. Линейное программирование математических операций на Ассемблере.
- 1.1.7.Организация ветвлений на языке Ассемблера.
- 1.1.8.Организация циклов на языке Ассемблера

Задание №1

Составить листинг программы на языке ассемблера для микропроцессорных систем по работе со стеками. Дать понятие микропроцессора, стека

Оценка	Показатели оценки
	Листинг программы на языке ассемблера для микропроцессорной системы составлен с ошибками. Понятия не даны
	Листинг программы на языке ассемблера для микропроцессорной системы составлен. Понятия даны с ошибками или дано только одно понятие.

5	Листинг программы на языке ассемблера для микропроцессорной
	системы составлен. Понятия даны и все расписаны.

2.3 Текущий контроль (ТК) № 3

Тема занятия: 1.1.10. Принципы отладки программ на языке ассемблера.

Метод и форма контроля: Практическая работа (Информационно-аналитический)

Вид контроля: письменный

Дидактическая единица: 1.3 методы тестирования и способы отладки МПС Занятие(-я):

- 1.1.7.Организация ветвлений на языке Ассемблера.
- 1.1.8.Организация циклов на языке Ассемблера
- 1.1.9. Принципы работы со стеком на языке ассемблера.

Задание №1

Указать способы тестирования и отладки МПС, многопроцессорных и многомашинных вычислительных систем.

Оценка	Показатели оценки
3	Способы тестирования и отладки МПС указаны с ошибками. Отладка многопроцессорных и многомашинных вычислительных систем не приведена.
4	Способы тестирования и отладки МПС указаны. Отладка многопроцессорных и многомашинных вычислительных систем приведена с ошибками.
5	Способы тестирования и отладки МПС указаны. Отладка многопроцессорных и многомашинных вычислительных систем приведена правильно.

2.4 Текущий контроль (ТК) № 4

Тема занятия: 1.2.6. Работа с памятью в реальном режиме работы

Метод и форма контроля: Практическая работа (Информационно-аналитический)

Вид контроля: Письменный

Дидактическая единица: 2.2 производить тестирование и отладку МПС **Занятие(-я):**

- 1.1.12. Обработка строк и массивов в ассемблере
- 1.2.4. Режимы обмена информацией с периферийными устройствами
- 1.2.5. Параллельные и последовательные синхронные и асинхронные интерфейсы в системе памяти.

Залание №1

Составить алгоритм обмена информацией через контроллер прямого доступа к памяти. Перечислить виды памяти, ее устройство, принцип и режимы работы,

Оценка	Показатели оценки
3	Составлен алгоритм обмена информацией через контроллер прямого доступа к памяти. Виды памяти не приведены. Устройство, принцип и режимы работы памяти выполнены с
4	ошибками, методы тестирования и отладки не указаны. Составлен алгоритм обмена информацией через контроллер прямого доступа к памяти. Виды памяти приведены. Устройство,принцип и режимы работы памяти выполнены с ошибками, методы тестирования и отладки указаны.
5	Составлен алгоритм обмена информацией через контроллер прямого доступа к памяти. Виды памяти приведены. Устройство, принцип и режимы работы, методы тестирования и отладки указаны.

Задание №2

Составить алгоритм обмена информацией через контроллер прямого доступа к памяти. Перечислить виды памяти, ее устройство, принцип и режимы работы, методы тестирования и отладки.

2.5 Текущий контроль (ТК) № 5

Тема занятия: 1.2.11. Адресация портов периферийных устройств и формирование управляющих сигналов.

Метод и форма контроля: Практическая работа (Информационно-аналитический)

Вид контроля: Письменная

Дидактическая единица: 2.2 производить тестирование и отладку МПС **Занятие(-я):**

- 1.2.8. Подключение внешней памяти программ и данных.
- 1.2.9.Исследование режимов ввода-вывода
- 1.2.10.Исследование работы АЦП и ЦАП в составе МПС

Задание №1

Произвести тестирование и отладку систем по индивидуальному заданию

Оценка	Показатели оценки	
	Сделано только тестирование системы. Отладка системы не была произведена	

	Тестирование и отладка сделаны с небольшим количеством ошибок
5	Тестирование и отладка сделаны правильно

2.6 Текущий контроль (ТК) № 6

Тема занятия: 1.2.12.Изучение работы МПС на основе однокристального МК

Метод и форма контроля: Практическая работа (Сравнение с аналогом)

Вид контроля: Письменно

Дидактическая единица: 1.4 состояние производства и использование МПС Занятие(-я):

- 1.1.3. Понятие регистровой модели микропроцессора. Структура однокристального микропроцессора.
- 1.1.4. Машинный цикл. Сброс и синхронизация модулей системы. Система команд на языке Ассемблер
- 1.1.7.Организация ветвлений на языке Ассемблера.
- 1.1.8.Организация циклов на языке Ассемблера
- 1.1.9.Принципы работы со стеком на языке ассемблера.
- 1.1.11.Работа с массивами на языке ассемблера
- 1.1.12.Обработка строк и массивов в ассемблере
- 1.1.13. Написание программ с использованием подпрограмм.
- 1.2.1.Особенности организации модульной памяти. Дешифрация адреса.

Взаимодействие памяти и языка Ассемблер.

- 1.2.2. Распределение адресного пространства. Использование КЭШ-памяти команд и данных.
- 1.2.4. Режимы обмена информацией с периферийными устройствами
- 1.2.5. Параллельные и последовательные синхронные и асинхронные интерфейсы в системе памяти.
- 1.2.6. Работа с памятью в реальном режиме работы
- 1.2.7. Работа с памятью в защищенном режиме работы микропроцессора.
- 1.2.8. Подключение внешней памяти программ и данных.
- 1.2.9.Исследование режимов ввода-вывода
- 1.2.10. Исследование работы АЦП и ЦАП в составе МПС
- 1.2.11. Адресация портов периферийных устройств и формирование управляющих сигналов.

Задание №1

Спроектировать аппаратную и программную части микропроцессорного устройства (индивидуальное задание)

Оценка	Показатели оценки

3	Спроектировано аппаратная часть микропроцессорного устройства правильно, программная часть неправильно (ошибки в кодах) по индивидуальному заданию
4	Спроектировано аппаратная часть микропроцессорного устройства правильно, программная часть содной ошибкой в кодах по индивидуальному заданию
5	Спроектировано аппаратная и программная части микропроцессорного устройства правильно по индивидуальному заданию

2.7 Текущий контроль (ТК) № 7

Тема занятия: 1.3.11. Комплексная отладка МП систем **Метод и форма контроля:** Лабораторная работа (Опрос)

Вид контроля:

Дидактическая единица: 1.2 программное обеспечение микропроцессорных систем

Занятие(-я):

- 1.1.11. Работа с массивами на языке ассемблера
- 1.1.12.Обработка строк и массивов в ассемблере
- 1.1.13. Написание программ с использованием подпрограмм.
- 1.2.9. Исследование режимов ввода-вывода
- 1.3.3. Режим работы микропроцессоров
- 1.3.4.Программируемая логика и их применение в микропроцессорных системах
- 1.3.5.Общие сведения, классификация. CPLD сложные программируемые логические устройства. Описание СБИС ПЛ устройств
- 1.3.6.Выполнение оптимизации программы с помощью встроенного отладчика.
- 1.3.7.Исследование работы таймера и его использование в МПС.
- 1.3.8.Изучение программно-аппаратных средств микропроцессорного комплекса.
- 1.3.9. Разработка модуля управления подсистемы комплекса.

Задание №1

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Оценка	Показатели оценки
--------	-------------------

Задание №2

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Оценка	Показатели оценки
--------	-------------------

3	Перечисленны только виды ПО МПС или языки
	программирования, которые используются в МПС.
4	Перечисленны не все виды ПО МПС и языки программирования, которые используются в МПС.
5	Перечисленны все виды ПО МПС и языки программирования, которые используются в МПС.

Задание №3

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Оценка	Показатели оценки
--------	-------------------

Задание №4

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Γ	Оценка	Показатели оценки
Т	O iquiniti	110 Kusumettii otjenkti

Задание №5

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Оценка	Показатели оценки
--------	-------------------

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

№ семестра	Вид промежуточной аттестации
7	Дифференцированный зачет

Дифференцированный зачет может быть выставлен автоматически по	
результатам текущих контролей	
Текущий контроль №1	
Текущий контроль №2	
Текущий контроль №3	
Текущий контроль №4	
Текущий контроль №5	
Текущий контроль №6	
Текущий контроль №7	

Метод и форма контроля: Практическая работа (Опрос)

Вид контроля: по выбору выполнить одно теоретическое и одно практическое задание

Дидактическая единица для контроля:

1.1 базовую функциональную схему МПС

Задание №1 (из текущего контроля)

Начертить структуру микропроцессора, указать назначение блоков, их параметры и режимы работы. Составить алгоритм обработки маскированных и немаскированных прерываний.

Оценка	Показатели оценки	
3	Приведена структура микропроцессора, назначение устройств, параметры и режимы работы правильно. Не приведен алгоритм обработки маскированных и немаскированных прерываний.	
4	Приведена структура микропроцессора, назначение устройств, параметры и режимы работы правильно. Приведен алгоритм обработки маскированных и немаскированных прерываний с ошибками.	
5	Приведена структура микропроцессора, назначение устройств, параметры и режимы работы правильно. Приведен алгоритм обработки маскированных и немаскированных прерываний правильно.	

Дидактическая единица для контроля:

1.2 программное обеспечение микропроцессорных систем

Задание №1 (из текущего контроля)

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Оценка	Показатели оценки
--------	-------------------

Задание №2 (из текущего контроля)

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Оценка	Показатели оценки	
3	Перечисленны только виды ПО МПС или языки программирования, которые используются в МПС.	
4	Перечисленны не все виды ПО МПС и языки программирования, которые используются в МПС.	
5	Перечисленны все виды ПО МПС и языки программирования, которые используются в МПС.	

Задание №3 (из текущего контроля)

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Оценка	Показатели оценки
--------	-------------------

Задание №4 (из текущего контроля)

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Оценка	Показатели оценки
--------	-------------------

Задание №5 (из текущего контроля)

Описать виды пограммного обеспечения МПС. Описать какие языки программирования используются в программном обеспечение.

Оценка	Показатели оценки
--------	-------------------

Дидактическая единица для контроля:

1.3 методы тестирования и способы отладки МПС

Задание №1 (из текущего контроля)

Указать способы тестирования и отладки МПС, многопроцессорных и многомашинных вычислительных систем.

Оценка	Показатели оценки
3	Способы тестирования и отладки МПС указаны с ошибками. Отладка многопроцессорных и многомашинных вычислительных
	систем не приведена.
4	Способы тестирования и отладки МПС указаны. Отладка многопроцессорных и многомашинных вычислительных систем приведена с ошибками.
5	Способы тестирования и отладки МПС указаны. Отладка многопроцессорных и многомашинных вычислительных систем приведена правильно.

Дидактическая единица для контроля:

1.4 состояние производства и использование МПС

Задание №1 (из текущего контроля)

Спроектировать аппаратную и программную части микропроцессорного устройства (индивидуальное задание)

Оценка	Показатели оценки
3	Спроектировано аппаратная часть микропроцессорного устройства правильно, программная часть неправильно (ошибки в кодах) по индивидуальному заданию
4	Спроектировано аппаратная часть микропроцессорного устройства правильно, программная часть содной ошибкой в кодах по индивидуальному заданию
5	Спроектировано аппаратная и программная части микропроцессорного устройства правильно по индивидуальному заданию

Дидактическая единица для контроля:

2.1 составлять программы на языке программирования для микропроцессорных систем

Задание №1 (из текущего контроля)

Составить листинг программы на языке ассемблера для микропроцессорных систем

по работе со стеками. Дать понятие микропроцессора, стека

Оценка	Показатели оценки
3	Листинг программы на языке ассемблера для микропроцессорной системы составлен с ошибками. Понятия не даны
4	Листинг программы на языке ассемблера для микропроцессорной системы составлен. Понятия даны с ошибками или дано только одно понятие.
5	Листинг программы на языке ассемблера для микропроцессорной системы составлен. Понятия даны и все расписаны.

Дидактическая единица для контроля:

2.2 производить тестирование и отладку МПС

Задание №1 (из текущего контроля)

Произвести тестирование и отладку систем по индивидуальному заданию

Оценка	Показатели оценки
3	Сделано только тестирование системы. Отладка системы не была произведена
4	Тестирование и отладка сделаны с небольшим количеством ошибок
5	Тестирование и отладка сделаны правильно

Задание №2 (из текущего контроля)

Составить алгоритм обмена информацией через контроллер прямого доступа к памяти. Перечислить виды памяти, ее устройство, принцип и режимы работы, методы тестирования и отладки.

Оценка	Показатели оценки
3	Составлен алгоритм обмена информацией через контроллер прямого доступа к памяти. Виды памяти не приведены. Устройство, принцип и режимы работы памяти выполнены с ошибками, методы тестирования и отладки не указаны.
4	Составлен алгоритм обмена информацией через контроллер прямого доступа к памяти. Виды памяти приведены. Устройство,принцип и режимы работы памяти выполнены с ошибками, методы тестирования и отладки указаны.

5	Составлен алгоритм обмена информацией через контроллер
	прямого доступа к памяти. Виды памяти приведены. Устройство,
	принцип и режимы работы, методы тестирования и отладки
	указаны.

Задание №3 (из текущего контроля)

Составить алгоритм обмена информацией через контроллер прямого доступа к памяти. Перечислить виды памяти, ее устройство, принцип и режимы работы, методы тестирования и отладки.

Оценка	Показатели оценки
--------	-------------------

Дидактическая единица для контроля:

2.3 выбирать микроконтроллер/микропроцессор для конкретной системы управления

Задание №1 (из текущего контроля)

Выбрать микроконтроллер/микропроцессор для конкретной системы управления (индивидуальное задание)

Оценка	Показатели оценки
3	Микроконтроллер/микропроцессор для конкретной системы управления выбран неправильно с ошибками.
4	Микроконтроллер/микропроцессор для конкретной системы управления выбран правильно, но с ошибками.
5	Микроконтроллер/микропроцессор для конкретной системы управления выбран правильно.