

Министерство образования Иркутской области Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Иркутский авиационный техникум»

Методические указания по выполнению самостоятельной работы по междициплинарному курсу

МДК.01.01 Технологические процессы изготовления деталей машин

специальности 15.02.08 Технология машиностроения РАССМОТРЕНЫ

УТВЕРЖДАЮ Зам. директора по УР Е.А. Коробкова

Председатель ЦК

___ / С.Л. Кусакин /

№	Разработчик ФИО
1	Степанов Сергей Леонидович

Пояснительная записка

МДК.01.01 Технологические процессы изготовления деталей машин относится к ПМ.01 Разработка технологических процессов изготовления деталей машин. Самостоятельная работа является одним из видов внеаудиторной учебной работы обучающихся.

Основные цели самостоятельной работы:

- систематизация и закрепление теоретических знаний и практических умений обучающихся;
- углубление и расширение теоретических знаний, формирование умений использовать справочную документацию и дополнительную литературу;
- развитие познавательных способностей и активности обучающихся, творческой инициативы, самостоятельности, ответственности и организованности;
- формирование самостоятельного мышления;
- развитие исследовательских умений.

В результате изучения междисциплинарного курса студент должен знать:

- служебное назначение и конструктивно-технологические признаки детали;
- показатели качества деталей машин;
- правила отработки конструкции детали на технологичность;
- физико-механические свойства конструкционных и инструментальных материалов;
- методику проектирования технологического процесса изготовления детали;
- типовые технологические процессы изготовления деталей машин;
- виды деталей и их поверхности;
- классификацию баз;
- виды заготовок и схемы их базирования;
- условия выбора заготовок и способы их получения;
- способы и погрешности базирования заготовок;
- правила выбора технологических баз;
- виды обработки резания;
- виды режущих инструментов;
- элементы технологической операции;
- технологические возможности металлорежущих станков;
- назначение станочных приспособлений;
- методику расчета режимов резания;
- структуру штучного времени;
- назначение и виды технологических документов;
- требования ЕСКД и ЕСТД к оформлению технической документации;
- методику разработки и внедрения управляющих программ для обработки простых деталей на автоматизированном оборудовании;

• состав, функции и возможности использования информационных технологий в машиностроении.

Студент должен уметь:

- читать чертежи; анализировать конструктивно-технологические свойства детали, исходя из ее служебного назначения;
- определять тип производства;
- проводить технологический контроль конструкторской документации с выработкой рекомендаций по повышению технологичности детали;
- определять виды и способы получения заготовок;
- рассчитывать и проверять величину припусков и размеров заготовок;
- рассчитывать коэффициент использования материала;
- анализировать и выбирать схемы базирования;
- выбирать способы обработки поверхностей и назначать технологические базы;
- составлять технологический маршрут изготовления детали;
- проектировать технологические операции;
- разрабатывать технологический процесс изготовления детали;
- выбирать технологическое оборудование и технологическую оснастку;
- выбирать приспособления, режущий, мерительный и вспомогательный инструмент;
- рассчитывать режимы резания по нормативам;
- рассчитывать штучное время;
- оформлять технологическую документацию;
- составлять управляющие программы для обработки типовых деталей на металлообрабатывающем оборудовании;
- использовать пакеты прикладных программ для разработки конструкторской документации и проектирования технологических процессов.

Методические рекомендации помогут обучающимся целенаправленно изучать материал по теме, определять свой уровень знаний и умений при выполнении самостоятельной работы.

Рекомендации для обучающихся по выработке навыков самостоятельной работы:

- Слушать, записывать и запоминать лекцию.
- Внимательно читать план выполнения работы.
- Выбирать свой уровень подготовки задания.
- Обращать внимание на рекомендуемую литературу. Из перечня литературы выбирать ту, которая наиболее полно раскрывает вопрос задания.
- Учиться кратко излагать свои мысли.

- Использовать общие правила написания конспекта.
- Оценивать, насколько правильно понято содержание материала, для этого придумать вопрос, направленный на уяснение материала.
- Обращать внимание на достижение основной цели работы.

Тематический план

Раздел Тема	Тема занятия	Название работы	Количество часов
Раздел 1. Ведение технологических	Правила чтения чертежа.	Составление конспекта определения служебного	2
процессов изготовления деталей машин Тема 1. Основные понятия состава конструк торско-технологической документации.		назначения выданной детали.	
Тема 2. Детали машиностроительного производства.	Виды деталей. Маркировка материалов.	Составление конспекта свойств материала выданной детали.	2
	ПР2. Расчет технологичности детали.	Расчет технологичности детали, выданной для курсового проектирования.	4
Тема 4. Заготовки детало машин.	Способы получения заготовок. Факторы, влияющие на выбор заготовок.	Разработка рекомендаций по повышению технологичности детали, выданной для курсового проектирования.	1
	ПР3. Выполнение чертежа детали штрихпунктирными линиями. Конструирование заготовки детали.	Разработка рекомендаций по повышению технологичности детали, выданной для курсового проектирования. Определение типа производства детали, выданной для курсового проектирования и составление краткой характеристики определенного типа производства.	
	ПРЗ. Выполнение чертежа заготовки. Простановка размеров, написание технических условий.	Разработка чертежа заготовки детали, выданной для курсового проектирования.	10
Тема 5. Разработка технологических процессов МСП.	Правила записи операций и переходов	Разработка чертежа заготовки детали, выданной для курсового проектирования	1
	Выбор баз при обработке заготовок. Выбор средств измерения.	Расчет припусков на деталь, выданную для курсового проектирования. Внесение изменений в чертеж заготовки (при	4

		необходимости).	
	ПР5. Разработка операционных карт технического контроля и карт эскизов для техпроцесса механической обработки детали типа «вал».	Разработка и оформление технологического процесса обработки детали типа «вал».	6
	ПР6. Разработка операционных карт технического контроля и карт эскизов для техпроцесса механической обработки корпусной детали.	Разработка и оформление технологического процесса обработки корпусной детали, выданной для курсового проектирования.	12
Тема 6. Разработка расчетно- технологической карты.	ПР9. Разработка и построение диаграмм Z на расчетно-технологической карте.	Расчет режимов резания для обработки детали, выданной для курсового проектирования и занесение в технологический процесс.	3
Тема 7. Разработка курсового проекта.	Расчет детали на технологичность.	Расчет норм времени для обработки детали, выданной для курсового проектирования и занесение в технологический процесс.	3
	Разработка маршрутного технологического процесса. Составление схем базирования и закрепления.	Разработка РТК для детали, заданной для курсового проектирования.	10

Самостоятельная работа №1

Название работы: Составление конспекта определения служебного назначения выданной детали..

Цель работы: привитие навыков самостоятельной работы; развитие

познавательного интереса.

Уровень СРС: воспроизводящая.

Форма контроля: Проверка конспекта в рабочей тетради.

Количество часов на выполнение: 2 часа.

Задание:

Составить конспект определения служебного назначения выданной детали

Критерии оценки:

оценка «5» - наличие конспекта со всеми ответами на вопросы.

оценка «4» - наличие конспекта со всеми ответами на вопросы с незначительными недоработками.

оценка «3» - наличие конспекта.

Самостоятельная работа №2

Название работы: Составление конспекта свойств материала выданной детали...

Цель работы: привитие навыков самостоятельной работы; развитие

познавательного интереса..

Уровень СРС: воспроизводящая.

Форма контроля: Проверка конспекта в рабочей тетради...

Количество часов на выполнение: 2 часа.

Задание:

Составить конспект свойств материала выданной детали

Критерии оценки:

оценка «5» - наличие конспекта со всеми ответами на вопросы.

оценка «4» - наличие конспекта со всеми ответами на вопросы с незначительными недоработками.

оценка «3» - наличие конспекта.

Самостоятельная работа №3

Название работы: Расчет технологичности детали, выданной для курсового проектирования..

Цель работы: закрепить знания правил отработки конструкции детали на технологичность..

Уровень СРС: воспроизводящая.

Форма контроля: Проверка расчетов технологичности детали на бумажном носителе..

Количество часов на выполнение: 4 часа.

Задание:

Задание: Выполнить расчет технологичности выданной детали.

Рекомендации:

- 1. Выполнить чертеж детали.
- 2. Рассчитать коэффициенты: точности, шероховатости и унификации.
- 3. Сделать общий вывод о конструкции детали.
- 4. Оформить отчет на бумажном носителе.

Анализ технологичности детали по коэффициентам (пример выполнения).

$$K_{T,H} = 1 - \frac{1}{A_{cp.}}$$

Коэффициент точности

Аср.- средний квалитет точности.

$$A_{cp.} = \frac{\sum Ani}{\sum ni} = \frac{9*2+14*22}{2+22} = \frac{18+308}{24} = \frac{326}{24} = 13.6$$

Где пі –число размеров чертежа соответствующих квалитетов точности.

$$K_{\text{т.н.}} = 1 - \frac{1}{13.6} = 0.92$$
 $\geq 0.5 = > \text{технологична.}$

Если коэффициент точности больше чем 0.5, то деталь считается технологичной.

$$\underbrace{K}_{\text{III}} = \frac{1}{B_{\text{cp}}}$$

Коэффициент шероховатости

Бср- средний класс шероховатости.

$$\mathbf{E}_{cp} = \frac{\sum \mathbf{E}_{ni}}{\sum ni} = \frac{6*26+5*45}{26+45} = \frac{156+225}{71} = \frac{381}{71} = 5.36$$

ni – число поверхностей соответствующих классов шероховатости.

$$K_{\text{III}} = \frac{1}{5.36} = 0.18 \ge 0.16$$
 => технологична

Если коэффициент шероховатости больше чем 0.16, то деталь считается технологичной.

Коэффициент унификации Ку.э.= ^{Q₃}

Где Qу.э. – число унифицированных конструктивных элементов (резьба, фаски, отверстия, радиусы и т.д.)

Qэ- общее число конструктивных элементов.

$$Q_{y.3} = \frac{8+14+4+13+4}{25+12+7+23+4} = \frac{40}{64} = 0.62$$

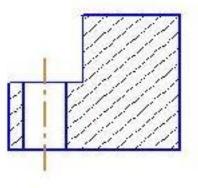
 $0.62 \ge 0.6 = >$ технологична

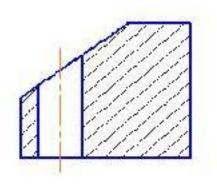
Если коэффициент унификации больше чем 0.6, то деталь считается технологичной.

Коэффициент использования материала

$$K_{\text{H,M.}} = \frac{M_{\text{A}}}{M_{\text{B}}} = \frac{0.72}{1.01} = 0.712$$

Мд – масса детали.


Мз – масса заготовки.


0.712 > 0.7 — технологична

Если коэффициент использования материала больше или равен 0.7, то деталь считается технологичной.

Кроме коэффициентов при анализе детали на технологичность рассматривают и другие технологические требования:

- 1. Деталь должна быть жесткой и прочной, стенки и перегородки должны быть достаточных размеров, чтобы при закреплении заготовки и в процессе обработки не возникали деформации а следовательно и погрешность обработки.
- 2. Базовые поверхности детали должны иметь достаточную протяженность позволяющую осуществить полную механическую обработку от одной неизменной базы.
- 3. Обрабатываемые поверхности должны быть открыты и доступны для подхода режущего инструмента при врезании и отхода при выходе.
- 4. Внешняя форма детали должна давать возможность одновременно обрабатывать несколько наружных поверхностей путем много инструментальной обработки.
- 5. Отверстия корпусных деталей по возможности должны иметь простую геометрическую форму без кольцевых канавок и фасок.
- 6. Возможность сквозной обработки при помощи расточных инструментов.
- 7. Отверстия, оси которых расположены под углом относительно стенки обрабатываемой детали, нежелательны. При сверлении подобных отверстий создаются неудобства резания, так как режущие кромки начинают резать не одновременно.
- 8. В стенках и перегородках не желательны различные окна, прерывающие отверстия и т.д.
- 9. Крепежные отверстия деталей должны быть стандартными.

Технологично

Не технологично

Критерии оценки:

оценка «5» - При полных, правильных расчетах и выводах.

оценка «4» - При правильных расчетах, недостаточно полных выводах.

оценка «3» - При наличии незначительных ошибок в расчетах и выводах.

Самостоятельная работа №4

Название работы: Разработка рекомендаций по повышению технологичности детали, выданной для курсового проектирования..

Цель работы: закрепить умения проводить технологический контроль конструкторской документации с выработкой рекомендаций по повышению технологичности детали..

Уровень СРС: творческая.

Форма контроля: Проверка разработанных рекомендаций по повышению технологичности детали на бумажном носителе..

Количество часов на выполнение: 1 час.

Задание:

Задание: Разработать рекомендации по повышению технологичности детали.

Рекомендации:

- 1. Прочитать выполненную ранее СРС №3.
- 2. По итогам выполненных расчетов технологичности детали в СРС №3 разработать рекомендации по повышению технологичности.
- 3. Оформить отчет на бумажном носителе.

Критерии оценки:

оценка «5» - Рекомендации полноценно повышают технологичность детали.

оценка «4» - Рекомендации повышают технологичность детали по трем критериям.

оценка «3» - Рекомендации повышают технологичность детали по двум критериям.

Самостоятельная работа №5

Название работы: Разработка рекомендаций по повышению технологичности детали, выданной для курсового проектирования. Определение типа производства детали, выданной для курсового проектирования и составление краткой

характеристики определенного типа производства...

Цель работы: закрепить умения определять тип производства...

Уровень СРС: воспроизводящая.

Форма контроля: Проверка отчета на бумажном носителе..

Количество часов на выполнение: 3 часа.

Задание:

: Определить тип производства выданной детали.

Рекомендации (смотри методические указания по выполнению курсового проекта):

- 1. Предварительно определить тип производства детали по таблице в зависимости от массы детали и годового объема выпуска.
- 2. Определить тип производства детали по коэффициенту закрепления операций (Кзо).
- 3. Дать краткую характеристику определенного типа производства.
- 4. Оформить отчет на бумажном носителе.

Критерии оценки:

- оценка «5» Определение типа производства дано полноценно без ошибок.
- оценка «4» Определение типа производства дано без предварительного определения.
- оценка «3» Определение типа производства дано без предварительного определения с незначительными ошибками.

Самостоятельная работа №6

Название работы: Разработка чертежа заготовки детали, выданной для курсового проектирования..

Цель работы: закрепить умения определять виды и способы получения заготовок и знания условий выбора заготовок и способов их получения..

Уровень СРС: реконструктивная.

Форма контроля: Проверка чертежа заготовки в электронном виде..

Количество часов на выполнение: 10 часов.

Задание:

Разработать чертеж заготовки выданной детали.

Рекомендации (смотри Методические указания по выполнению курсового проекта и Комплект методический указаний по выполнению практических работ по МДК.01.01. Технологические процессы изготовления деталей машин):

- 1) Первоначально вычерчиваются контуры детали, видимые и невидимые, тонкими линиями (сочетание длинного отрезка с двумя короткими : "_____ " в системе «AutoCAD» применять линию Phantom2). Детали придают положение, принимаемое ею при штамповке или отливке.
 - 2) Выбирается положение поверхности (или плоскости) разъёма;
 - 3) Назначаются припуски на обрабатываемые элементы детали;

- 4) Устанавливаются напуски, штамповочные уклоны, радиусы закруглений;
- 5) При вычерчивании заготовки учитывают следующие условия:
- на все поверхности детали, которые перпендикулярны (или близки к этому) плоскости разъёма, назначаются штамповочные (литейные) уклоны, т. е. в чертеже штамповки (отливки) не должно быть линий перпендикулярных плоскости разъёмов штампов (формы).
- все поверхности обязательно сопрягаются радиусом. Внутренние радиусы больше наружных в 1.5-5 раз.
- строятся линии контура заготовки, на расстоянии равном величине общего припуска, от контура детали.
- при вычерчивании заготовки, на виде в плане (перпендикулярно плоскости разъёма), строятся линии, показывающие штамповочный (литейный) уклон (параллельная линия к контуру заготовки). Величина отступа от контура заготовки зависит от высоты борта и определяется по формуле:

S = tga * h

где: а-угол уклона;

h-высота борта детали;

Для невысоких бортов рекомендуется рисовать отступ не менее 1-2 мм; в случае, когда фактическая величина отступов, при переходе от одной поверхности к другой, отличается не значительно, следует, для наглядности, вычерчивать отступы визуально разными. Для наклонных ребер линия строится с постепенным переходом с одной величины отступа на другой.

- проставляются все размеры, необходимые для однозначного понимания чертежа заготовки. В скобках проставляются размеры детали.
- чертеж дополняется техническими условиями, в которых указываются: вид термообработки и твердость; допускаемая величина остаточного заусенца после обрезки облоя; метод очистки поверхностей от окалины; глубина допускаемых внешних дефектов; допускаемые величины биений, перекосов, кривизны, смещений; особые требования к базовым поверхностям и другое.

Критерии оценки:

- оценка «5» Вычерчены изображения и формы детали чертежа согласно ГОСТ 2. 305-68 без ошибок. Нанесены размеры согласно ГОСТ 2307-68 без ошибок. Вписаны технические условия изготовления детали согласно ГОСТ 2309-68 без ошибок. Даны ответы на все вопросы.
- оценка «4» Вычерчены изображения и формы детали чертежа согласно ГОСТ 2. 305-68 без ошибок. Нанесены размеры с нарушением ГОСТ 2307-68. Вписаны технические условия изготовления детали согласно ГОСТ 2309-68 без ошибок. Даны ответы на 4 вопроса.
- оценка «3» Вычерчены изображения и формы детали чертежа выполнены с

нарушением ГОСТ 2. 305-68 и содержат ошибки. Нанесены размеры с нарушением ГОСТ 2307-68 и имеют отклонения от истинных размеров. Технические условия изготовления детали выполнены с нарушением ГОСТ 2309-68 и являются не полными. Дан правильно ответ на 3 вопроса.

Самостоятельная работа №7

Название работы: Разработка чертежа заготовки детали, выданной для курсового проектирования.

Цель работы: закрепить умения рассчитывать и проверять величину припусков и размеров заготовок..

Уровень СРС: реконструктивная.

Форма контроля: Проверка чертежа заготовки в электронном виде...

Количество часов на выполнение: 1 час.

Задание:

Разработать чертеж заготовки выданной детали.

Рекомендации (смотри Методические указания по выполнению курсового проекта и Комплект методический указаний по выполнению практических работ по МДК.01.01. Технологические процессы изготовления деталей машин):

- 1) Первоначально вычерчиваются контуры детали, видимые и невидимые, тонкими линиями (сочетание длинного отрезка с двумя короткими : "_____ " в системе «AutoCAD» применять линию Phantom2). Детали придают положение, принимаемое ею при штамповке или отливке.
 - 2) Выбирается положение поверхности (или плоскости) разъёма;
 - 3) Назначаются припуски на обрабатываемые элементы детали;
 - 4) Устанавливаются напуски, штамповочные уклоны, радиусы закруглений;
 - 5) При вычерчивании заготовки учитывают следующие условия:
 - на все поверхности детали, которые перпендикулярны (или близки к этому) плоскости разъёма, назначаются штамповочные (литейные) уклоны, т. е. в чертеже штамповки (отливки) не должно быть линий перпендикулярных плоскости разъёмов штампов (формы).
 - все поверхности обязательно сопрягаются радиусом. Внутренние радиусы больше наружных в 1.5-5 раз.
 - строятся линии контура заготовки, на расстоянии равном величине общего припуска, от контура детали.
 - при вычерчивании заготовки, на виде в плане (перпендикулярно плоскости разъёма), строятся линии, показывающие штамповочный (литейный) уклон (параллельная линия к контуру заготовки). Величина отступа от контура заготовки зависит от высоты борта и определяется по формуле:

где: а-угол уклона;

h-высота борта детали;

Для невысоких бортов рекомендуется рисовать отступ не менее 1-2 мм; в случае, когда фактическая величина отступов, при переходе от одной поверхности к другой, отличается не значительно, следует, для наглядности, вычерчивать отступы визуально разными. Для наклонных ребер линия строится с постепенным переходом с одной величины отступа на другой.

- проставляются все размеры, необходимые для однозначного понимания чертежа заготовки. В скобках проставляются размеры детали.
- чертеж дополняется техническими условиями, в которых указываются: вид термообработки и твердость; допускаемая величина остаточного заусенца после обрезки облоя; метод очистки поверхностей от окалины; глубина допускаемых внешних дефектов; допускаемые величины биений, перекосов, кривизны, смещений; особые требования к базовым поверхностям и другое.

Критерии оценки:

- оценка «5» Вычерчены изображения и формы детали чертежа согласно ГОСТ 2. 305-68 без ошибок. Нанесены размеры согласно ГОСТ 2307-68 без ошибок. Вписаны технические условия изготовления детали согласно ГОСТ 2309-68 без ошибок. Даны ответы на все вопросы.
- оценка «4» Вычерчены изображения и формы детали чертежа согласно ГОСТ 2. 305-68 без ошибок. Нанесены размеры с нарушением ГОСТ 2307-68. Вписаны технические условия изготовления детали согласно ГОСТ 2309-68 без ошибок. Даны ответы на 4 вопроса.
- оценка «3» Вычерчены изображения и формы детали чертежа выполнены с нарушением ГОСТ 2. 305-68 и содержат ошибки. Нанесены размеры с нарушением ГОСТ 2307-68 и имеют отклонения от истинных размеров. Технические условия изготовления детали выполнены с нарушением ГОСТ 2309-68 и являются не полными. Дан правильно ответ на 3 вопроса.

Самостоятельная работа №8

Название работы: Расчет припусков на деталь, выданную для курсового проектирования. Внесение изменений в чертеж заготовки (при необходимости).. **Цель работы:** закрепить умения рассчитывать и проверять величину припусков и размеров заготовок..

Уровень СРС: реконструктивная.

Форма контроля: Проверка отчета на бумажном носителе и чертежа заготовки на бумажном носителе..

Количество часов на выполнение: 4 часа.

Задание:

Рассчитать припуски на все конструктивные элементы детали.

Рекомендации (смотри Методические указания по выполнению курсового проекта и Комплект методический указаний по выполнению практических работ по МДК.01.01. Технологические процессы изготовления деталей машин):

- 1. Рассчитать припуски на 2-3 конструктивные элемента детали аналитическим методом.
- 2. Определить припуски на все оставшиеся конструктивные элементы детали статистическим методом.
- 3. При необходимости внести изменения в чертеж заготовки.
- 4. Оформить отчет и чертеж заготовки на бумажном носителе.

Методические указания.

Минимальные и номинальные значения припусков рассчитываются по формулам: -для тел вращения (двусторонний припуск)

$$2Z\min_{i} = 2(Rz_{i-1} + h_{i-1} + \sqrt{\rho_{i-1}^2 + \varepsilon_i^2})$$

Минимальные припуски:

Номинальный припуск для первого перехода:

$$2Z_{HOM_i} = 2Z_{min_i} + Td_{i-1}^-$$

Номинальный припуск для последнего перехода:

$$2ZHOM_i = 2Z\min_i + Td_{i-1} + Td_i^+$$

Для остальных переходов номинальные припуски:

$$2ZHOM = 2Z\min_{i} + Td_{i-1}$$

где: **Rzi-1** - шероховатость поверхности после предшествующего перехода;

hi-1 - глубина дефектного слоя после предшествующего перехода (не учитывается после термообработки и после 1го перехода для чугуна и цветных металлов)

 ρ i-1 - пространственные отклонения, оставшиеся после предшествующего перехода;

гі-1 - погрешность базирования на данном переходе;

Td - допуск на размер (+ -положительная часть допуска, - - отрицательная часть).

Пространственные отклонения для заготовки определяются по формуле:

$$\rho_0 = \sqrt{\rho_u^2 + \rho_{uck}^2}$$

где:
$$ho_{y} = 0,25 \cdot \sqrt{Td^2 + 1}$$

риск - искривление оси заготовки;

риск=**ДКр***l **МКМ**

где: ⊿Кр - кривизна профиля;

I - длина заготовки.

Пространственные отклонения после механической обработки (для каждого перехода) определяем по формуле:

где: Ку - коэффициент уточнения;

Погрешность установки заготовки на выполняемом переходе определяется по

$$\varepsilon_{y} = \sqrt{\varepsilon_{6}^{2} + \varepsilon_{3}^{2}}$$

формуле:

где: **єб -** погрешность базирования;

єз - погрешность закрепления;

-для плоской поверхности (в случае одностороннего припуска) минимальный

$$Z\min_{i} = Rz_{i-1} + h_{i-1} + \rho_{i-1} + \varepsilon_{i}$$

припуск рассчитывается по формуле:

Пространственные отклонения для поковок при базировании заготовки по плоскости, противоположной обрабатываемой определяются по формуле:

$$\rho_0 = \sqrt{\rho_{\kappa op}^2 + \rho_{cmeuy}^2}$$

где: *ркор* – коробление заготовки;

рсмещ – различные смещения при производстве заготовок

 $\rho \kappa o p = \Delta x$

где: Δx – удельная кривизна.

Другие необходимые значения определяются также как для тел вращения.

Критерии оценки:

оценка «5» - Припуски рассчитаны полноценно без ошибок.

оценка «4» - Припуски рассчитаны полноценно с незначительными ошибками.

оценка «3» - Припуски рассчитаны без использования статистического метода с незначительными оппибками.

Самостоятельная работа №9

Название работы: Разработка и оформление технологического процесса обработки детали типа «вал»..

Цель работы: закрепить знаний. **Уровень СРС:** реконструктивная.

Форма контроля: Проверка технологического процесса обработки детали типа «вал» на бумажном носителе..

Количество часов на выполнение: 6 часов.

Задание:

Разработать технологический процесс механической обработки детали типа «вал», выданной преподавателем.

Рекомендации (смотри Методические указания по выполнению курсового проекта и Комплект методический указаний по выполнению практических работ по МДК.01.01. Технологические процессы изготовления деталей машин):

- 1. Спроектировать маршрут обработки детали типа «вал».
- 2. Разработать маршрутные карты.
- 3. Разработать операционные карты.
- 4. Разработать карты эскизов к операциям механической обработки.
- 5. Рассчитать режимы резания и нормы времени к операциям механической обработки и занести в соответствующие графы технологического процесса.
- 6. Оформить технологический процесс на бумажном носителе.

Критерии оценки:

- оценка «5» Маршрутная карта составлена и заполнена грамотно и технологично без ошибок и выполнены правильно все настройки.
- оценка «4» Маршрутная карта составлена и заполнена грамотно и технологично но с незначительными ошибками, выполнены правильно все настройки.
- оценка «3» Маршрутная карта составлена и заполнена, но имеются ошибки в технологии обработки и заполнении. Настройки также содержат ошибки.

Самостоятельная работа №10

Название работы: Разработка и оформление технологического процесса обработки корпусной детали, выданной для курсового проектирования..

Цель работы: закрепить знаний.

Уровень СРС: реконструктивная.

Форма контроля: Проверка технологического процесса обработки корпусной детали в электронном виде..

Количество часов на выполнение: 12 часов.

Задание:

Разработать технологический процесс механической обработки корпусной детали, выданной преподавателем.

Рекомендации (смотри Методические указания по выполнению курсового проекта и Комплект методический указаний по выполнению практических работ по МДК.01.01. Технологические процессы изготовления деталей машин):

- 1. Спроектировать маршрут обработки детали.
- 2. Разработать маршрутные карты.
- 3. Разработать операционные карты.
- 4. Разработать карты эскизов к операциям механической обработки.
- 5. Предоставить технологический процесс на проверку преподавателю в электронном виде.

Критерии оценки:

- оценка «5» Маршрутная карта составлена и заполнена грамотно и технологично без ошибок и выполнены правильно все настройки.
- оценка «4» Маршрутная карта составлена и заполнена грамотно и технологично но с незначительными ошибками, выполнены правильно все настройки.
- оценка «3» Маршрутная карта составлена и заполнена, но имеются ошибки в технологии обработки и заполнении. Настройки также содержат ошибки.

Самостоятельная работа №11

Название работы: Расчет режимов резания для обработки детали, выданной для курсового проектирования и занесение в технологический процесс..

Цель работы: закрепить знаний.

Уровень СРС: реконструктивная.

Форма контроля: Проверка отчета на бумажном носителе..

Количество часов на выполнение: 3 часа.

Задание:

Рассчитать режимы резания к операциям механической обработки технологического процесса изготовления корпусной детали, выданной преподавателем.

Рекомендации (смотри Методические указания по выполнению курсового проекта и Комплект методический указаний по выполнению практических работ по МДК.01.01. Технологические процессы изготовления деталей машин):

- 1. Рассчитать режимы резания к операциям механической обработки
- 2. Занести рассчитанные режимы резания в соответствующие графы

технологического процесса.

3. Оформить отчет по расчету режимов резания на бумажном носителе.

Критерии оценки:

- оценка «5» Наличие конспекта с правильно выполненным расчетом режимов резания.
- оценка «4» Наличие конспекта с выполненным расчетом режимов резания с небольшими недочетами.
- оценка «3» Наличие конспекта с выполненным расчетом режимов резания, но не на все позиции обработки и небольшими недочетами.

Самостоятельная работа №12

Название работы: Расчет норм времени для обработки детали, выданной для курсового проектирования и занесение в технологический процесс..

Цель работы: Закрепить знания: методики проектирования технологического процесса изготовления детали; структуры штучного времени; требований ЕСКД и ЕСТД к оформлению технической документации. Закрепить умения: рассчитывать штучное время; оформлять технологическую документацию..

Уровень СРС: реконструктивная.

Форма контроля: Проверка отчета на бумажном носителе и технологического процесса обработки корпусной детали на бумажном носителе..

Количество часов на выполнение: 3 часа.

Задание:

Рассчитать нормы времени к операциям механической обработки технологического процесса изготовления корпусной детали, выданной преподавателем.

Рекомендации (смотри Методические указания по выполнению курсового проекта и Комплект методический указаний по выполнению практических работ по МДК.01.01. Технологические процессы изготовления деталей машин):

- 1. Рассчитать нормы времени к операциям механической обработки.
- 2. Занести рассчитанные нормы времени в соответствующие графы технологического процесса.
- 3. Оформить отчет по выполнению расчетов норм времени и технологический процесс на бумажном носителе.

Критерии оценки:

- оценка «5» Наличие конспекта с правильно выполненным расчетом норм времени.
- оценка «4» Наличие конспекта выполненным расчетом норм времени с небольшими недочетами.
- оценка «3» Наличие конспекта выполненным расчетом норм времени, но не на все позиции обработки и небольшими недочетами.

Самостоятельная работа №13

Название работы: Разработка РТК для детали, заданной для курсового проектирования..

Цель работы: привить навыки самостоятельной работы, закрепить знания и умения, приобретенные в процессе изучения МДК.01.01. Технологические процессы изготовления деталей машин..

Уровень СРС: реконструктивная.

Форма контроля: Проверка чертежа РТК на бумажном носителе..

Количество часов на выполнение: 10 часов.

Задание:

Разработать расчетно-технологическую карту для обработки детали на станке с ЧПУ (на одну операцию).

Рекомендации (смотри Методические указания по выполнению курсового проекта и Комплект методический указаний по выполнению практических работ по МДК.01.01. Технологические процессы изготовления деталей машин): Порядок выполнения РТК

РТК составляется технологом и содержит законченный проект обработки деталей на станке с ЧПУ в виде графического изображения траектории движения инструмента со всеми необходимыми пояснениями. По данным РТК не обращаясь к чертежу детали можно полностью рассчитать программу работы станка.

Оформление РТК производится в следующей последовательности:

- 1. Деталь вычерчивается в масштабе (желательно 1:1) и ориентируется относительно осей координат.
- 2. Указываются используемые для базирования плоскости или какие-либо другие элементы базирования. Элементами базирования могут служить отверстия или колодцы, в которых можно просверлить отверстия, в таком случае можно использовать два отверстия для базирования на двух пальцах (цилиндрический и ромбический).
- 3. Выбирается исходная точка обработки (производится в зависимости от марки станка для станков марки ФП точка может находиться в любом месте, для станков марки МА нулевая точка может находиться только над центром стола), указываются все размеры, необходимые для программирования. Нулевая точка, базы, центр стола обязательно связываются размерами.
- 4. Намечаются расположения прижимов и зон крепления, производится их нумерация в порядке их использования.
- 5. Задаются параметры инструмента (диаметр, радиус на торце, длина режущей части, количество зубьев у фрезы, обороты вращения), выполняется описание, что выполняется на данном переходе, вычерчиваются эскизы на специальные инструменты. Описывается порядок работы (установки) прижимов.
- 6. Цветными линиями наносится траектория движения инструмента в плоскости XУ. Началом и соответственно концом траектории является исходная точка

обработки. Траектория обработки наносится с учетом выбранной последовательности и параметров применяемого инструмента. На траектории отмечаются все опорные точки и нумеруются последовательно от 1 ... и т.д., ставятся стрелки, указывающие направление движения. Опорные точки отмечаются по геометрическим (в которых происходит изменение траектории) и технологическим параметрам (точки в которых производятся технологические команды). Обозначаются точки остановки, необходимые для перезакрепления и контроля детали (которые называются точками технологического останова). Для облегчения контроля за положением рабочих органов станка координаты исходной точки, контрольных точек, точек остановки должны быть целым числом.

7. Далее оформляется диаграмма Z в следующем порядке: вычерчивается диаграмма Z (все подъемы и опускания инструмента в опорных точках); проставляются режимы резания по участкам обработки, а так же указываются ссылки на типовые технологические приемы, применяемые при обработке.

Критерии оценки:

- оценка «5» Наличие чертежа с РТК выполненным заданием, верные ответы на заданные вопросы.
- оценка «4» Наличие чертежа с РТК выполненными заданиями и последовательностью построения, даны правильно ответ на практически все вопросы (3 4).
- оценка «3» Наличие чертежа с РТК выполненным заданием и последовательностью построения, дан правильно ответ на 2 вопроса, чертеж выполнен небрежно.